
Resourceful Program Synthesis from
Graded Linear Types

Jack Hughes(B) and Dominic Orchard

School of Computing, University of Kent, Canterbury, UK
{joh6,d.a.orchard}@kent.ac.uk

Abstract. Linear types provide a way to constrain programs by speci-
fying that some values must be used exactly once. Recent work on graded
modal types augments and refines this notion, enabling fine-grained,
quantitative specification of data use in programs. The information pro-
vided by graded modal types appears to be useful for type-directed pro-
gram synthesis, where these additional constraints can be used to prune
the search space of candidate programs. We explore one of the major
implementation challenges of a synthesis algorithm in this setting: how
does the synthesis algorithm efficiently ensure that resource constraints
are satisfied throughout program generation? We provide two solutions to
this resource management problem, adapting Hodas and Miller’s input-
output model of linear context management to a graded modal linear
type theory. We evaluate the performance of both approaches via their
implementation as a program synthesis tool for the programming lan-
guage Granule, which provides linear and graded modal typing.

1 Introduction

Type-directed program synthesis is a long-studied technique rooted in automated
theorem proving [29]. A type-directed synthesis algorithm can be constructed as
an inversion of type checking, starting from a type and inductively synthesising
well-typed subterms, pruning the search space via typing. Via the Curry-Howard
correspondence [21], we can view this as proof search in a corresponding logic,
where the goal type is a proposition and the synthesised program is its proof.
Recent work has extended type-directed synthesis to refinement types [34], cost
specifications [27], differential privacy [35], and example-guided synthesis [12,33].

Automated proof search techniques have been previously adapted to linear
logics, accounting for resource-sensitive reasoning [7–9,20,31]. By removing the
structural rules of contraction and weakening, linear logic allows propositions to
be treated as resources that must be used exactly once [17]. Non-linear proposi-
tions are captured via the ‘exponential’ modality !. Linearity introduces a new
dimension to proof search and program synthesis: how do we inductively gener-
ate terms whilst pruning the search space of those which violate linearity? For
example, consider the following inductive synthesis rule, mirroring Gentzen’s
sequent calculus [15], which synthesises a term of type A ⊗ B :

c© The Author(s) 2021
M. Fernández (Ed.): LOPSTR 2020, LNCS 12561, pp. 151–170, 2021.
https://doi.org/10.1007/978-3-030-68446-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68446-4_8&domain=pdf
http://orcid.org/0000-0003-3174-4689
http://orcid.org/0000-0002-7058-7842
https://doi.org/10.1007/978-3-030-68446-4_8

152 J. Hughes and D. Orchard

Γ1 � A ⇒ t1 Γ2 � B ⇒ t2
Γ1, Γ2 � A ⊗ B ⇒ 〈t1, t2〉

Pair

Reading the rule bottom up: from a context of assumptions Γ1, Γ2 we can synthe-
sise the pair 〈t1, t2〉 from the product type A⊗B provided that we can inductively
synthesise the subterms of the pair, using Γ1 for the left side and Γ2 for the right.

But how do we partition a context of free variables Γ into Γ1 and Γ2 such
that Γ1 contains only those variables needed by t1 and Γ2 only those for t2? A
näıve approach is to try every possible partition of Γ . However, this becomes
unmanageable as the number of possible partitions is 2|Γ |, i.e., exponential in
the number of assumptions. This issue has been explored in automated theorem
proving for linear logic, and is termed the resource management problem [7].

To address this, Hodas and Miller described an input-output context manage-
ment scheme for linear logic programming [20], further developed by Cervesato
et al. [7]. In this approach, synthesis rules take the form Γ � A ⇒ t ; Δ with an
input context Γ and an output context Δ which contains all the hypotheses of
Γ that were not used in the proof t of A (akin to the notion of left over typing
for linear type systems [2,36]). This output context is then used as the input
context to subsequent subgoals. In the case of A ⊗ B , synthesis has the form:

Γ � A ⇒ t1; Δ1 Δ1 � B ⇒ t2; Δ2

Γ � A ⊗ B ⇒ 〈t1, t2〉; Δ2

Pair LeftOver

The non-determinism of how to divide Γ is resolved by using the entire context
as the input for the synthesis of the first subterm t1 from type A. If this succeeds,
the context Δ1 is returned containing the resources not needed to construct t1.
These remaining resources provide the input context to synthesise t2 from B ,
which in turn returns an output context Δ2 containing the resources not used
by the pair 〈t1, t2〉. We extend this approach, which we term subtractive resource
management, to graded modal types and present its dual: additive resource man-
agement. In the additive approach, the output context describes what resources
were used to synthesise a term, rather than what may still be used.

Graded modal types comprise an indexed family of modal operators whose
indices have structure capturing program properties [32]. In the context of lin-
ear logic, graded modalities generalise the indexed modality of Bounded Linear
Logic [18] !rA where r ∈ N captures the upper bound r on the number of times A
is used. Generalising such indices to an arbitrary (pre-ordered) semiring yields a
type system which can be instantiated to track various properties via the graded
modality, a technique which is increasingly popular [4,13,14,16,24,25,32,36].

Our primary contribution is the extension of the input-output model of
resource management for linear program synthesis to graded modal types. Our
input and output contexts contain both linear and graded assumptions. Graded
assumptions are annotated with a grade: an element of a pre-ordered semiring
describing the variable’s use. For example, grades drawn from N yield a system

Resourceful Program Synthesis from Graded Linear Types 153

akin to BLL which counts the number of times a variable is used, where a graded
assumption x : [A]2 means x can be used twice. An example instantiation of our
subtractive pair introduction rule is then as follows:

Γ, x : [A]2 � A ⇒ x ; Γ, x : [A]1 Γ, x : [A]1 � A ⇒ x ; Γ, x : [A]0
Γ, x : [A]2 � A ⊗ A ⇒ 〈x , x 〉; Γ, x : [A]0

The initial input context contains graded assumption x : [A]2. The first premise
synthesises the term x , returning an output context which contains the assump-
tion x with grade 1, indicating that x has been used once and can be used one
more time. The next premise synthesises the second part of the pair as x using
its remaining use. In the final output context, x is graded by 0, preventing it
from being used to synthesise subsequent terms.

We adapt the input-output model of linear logic synthesis to subtractive and
additive approaches in the presence of graded modal types, pruning the search
space via the quantitative constraints of grades. We develop a type-directed
synthesis tool for Granule, a functional language which combines indexed, linear,
and graded modal types [32]. Granule supports various graded modalities, and its
type checker leverages the Z3 SMT solver to discharge constraints on grades [30].
As type-based synthesis follows the structure of types, it is necessary to solve
equations on grades during synthesis, for which we make use of Granule’s SMT
integration. Such calls to an external prover are costly, and thus efficiency of
resource management is a key concern.

Section 2 introduces our core type theory (a subset of Granule’s type sys-
tem) based on the linear λ-calculus extended with graded modal types, pairs,
and sums. Section 3 describes the two core synthesis calculi (subtractive and
additive) as augmented inversions of the typing rules, as well as a variant of
additive synthesis. Section 4 describes the implementation1 and gives a quanti-
tative comparison of the synthesis techniques on a suite of benchmark programs.
The main finding is that the additive approach is often more efficient than the
subtractive, presenting a departure from the literature on linear logic theorem
proving which is typically subtractive.

Throughout, we will mostly use types-and-programs terminology rather than
propositions-and-proofs. Through the Curry-Howard correspondence, one can
switch smoothly to viewing our approach as proof search in logic.

2 Graded Linear λ-calculus

Our focus is a linear λ-calculus akin to a simply-typed linear functional language
with graded modalities, resembling the core languages of Gaboardi et al. [14] and
Brunel et al. [4], and a simply-typed subset of Granule [32].

1 https://github.com/granule-project/granule/releases/tag/v0.8.0.0.

https://github.com/granule-project/granule/releases/tag/v0.8.0.0

154 J. Hughes and D. Orchard

Types comprise linear functions, multiplicative conjunction (product types
⊗ and unit 1), additive disjunction (sum types ⊕), and a graded modality �r:

A,B ::= A � B | A ⊗ B | A ⊕ B | 1 | �rA (types)

where �rA is an indexed family of type operators where r ranges over the ele-
ments of some pre-ordered semiring (R, ∗, 1,+, 0,
) parameterising the calculus
(where ∗ and + are monotonic with respect to the pre-order
).
The syntax of terms provides the elimination and introduction forms:

t ::= x | λx .t | t1 t2 | [t] | let [x] = t1 in t2 | 〈t1, t2〉 | let 〈x1, x2〉 = t1 in t2
| () | let () = t1 in t2 | inl t | inr t | case t1 of inl x1 → t2| inr x2 → t3 (terms)

We use the syntax () for the inhabitant of multiplicative unit 1. Pattern matching
via a let is used to eliminate products and unit types; for sum types, case is
used to distinguish the constructors. The construct [t] introduces a graded modal
type �rA by ‘promoting’ a term t to the graded modality, and let [x] = t1 in t2
eliminates a graded modal value t1, binding a graded variable x in scope of t2.

Typing judgments are of the form Γ � t : A, where Γ ranges over contexts:

Γ ::= ∅ | Γ, x : A | Γ, x : [A]r (contexts)

Thus, a context may be empty ∅, extended with a linear assumption x : A or
extended with a graded assumption x : [A]r . For linear assumptions, structural
rules of weakening and contraction are disallowed. Graded assumptions may be
used non-linearly according to the constraints given by their grade, the semiring
element r. Throughout, comma denotes disjoint context concatenation.

Various operations on contexts are used to capture non-linear data flow via
grading. Firstly, context addition provides an analogue to contraction, combin-
ing contexts that have come from typing multiple subterms in a rule. Context
addition, written Γ1+Γ2, is undefined if Γ1 and Γ2 overlap in their linear assump-
tions. Otherwise graded assumptions appearing in both contexts are combined
via the semiring + of their grades.

Definition 1 (Context addition). For all Γ1, Γ2 context addition is defined
as follows by ordered cases matching inductively on the structure of Γ2:

Γ1 + Γ2 =

⎧
⎨

⎩

Γ1 Γ2 = ∅
((Γ ′

1, Γ
′′
1) + Γ ′

2), x : [A](r+s) Γ2 = Γ ′
2, x : [A]s ∧ Γ1 = Γ ′

1, x : [A]r , Γ ′′
1

(Γ1 + Γ ′
2), x : A Γ2 = Γ ′

2, x : A ∧ x : A /∈ Γ1

In the typing of case expressions, the least-upper bound of the two contexts used
to type each branch is used, defined:

Resourceful Program Synthesis from Graded Linear Types 155

Definition 2 (Partial least-upper bounds of contexts). For all Γ1, Γ2:

Γ1 � Γ2 =

⎧
⎪⎪⎨

⎪⎪⎩

∅ Γ1 = ∅ ∧ Γ2 = ∅
(∅ � Γ ′

2), x : [A]0�s Γ1 = ∅ ∧ Γ2 = Γ ′
2, x : [A]s

(Γ ′
1 � (Γ ′

2, Γ
′′
2)), x : A Γ1 = Γ ′

1, x : A ∧ Γ2 = Γ ′
2, x : A, Γ ′′

2

(Γ ′
1 � (Γ ′

2, Γ
′′
2)), x : [A]r�s Γ1 = Γ ′

1, x : [A]r ∧ Γ2 = Γ ′
2, x : [A]s , Γ ′′

2

where r�s is the least-upper bound of grades r and s if it exists, derived from
.

As an example of the partiality of �, if one branch of a case uses a linear variable,
then the other branch must also use it to maintain linearity overall, otherwise
the upper-bound of the two contexts for these branches is not defined.

x : A � x : A
Var

Γ, x : A � t : B
Γ � λx .t : A � B

Abs
Γ1 � t1 : A � B Γ2 � t2 : A

Γ1 + Γ2 � t1 t2 : B
App

Γ � t : A
Γ, [Δ]0 � t : A

Weak
Γ, x : A � t : B

Γ, x : [A]1 � t : B
Der

[Γ] � t : A
r ∗ [Γ] � [t] : �rA

Pr

Γ1 � t1 : �rA Γ2, x : [A]r � t2 : B
Γ1 + Γ2 � let [x] = t1 in t2 : B

Let� ∅ � () : 1
1

Γ1 � t1 : 1 Γ2 � t2 : A
Γ1 + Γ2 � let () = t1 in t2 : A

Let1

Γ1 � t1 : A Γ2 � t2 : B
Γ1 + Γ2 � 〈t1, t2〉 : A ⊗ B

Pair
Γ1 � t1 : A ⊗ B Γ2, x1 : A, x2 : B � t2 : C

Γ1 + Γ2 � let 〈x1, x2〉 = t1 in t2 : C
LetPair

Γ, x : [A]r , Γ ′ � t : B r � s

Γ, x : [A]s , Γ ′ � t : B
Approx

Γ � t : A
Γ � inl t : A ⊕ B

Inl
Γ � t : B

Γ � inr t : A ⊕ B
Inr

Γ1 � t1 : A ⊕ B Γ2, x1 : A � t2 : C Γ3, x2 : B � t3 : C
Γ1 + (Γ2
 Γ3) � case t1 of inl x1 → t2| inr x2 → t3 : C

Case

Fig. 1. Typing rules of the graded linear λ-calculus

Figure 1 defines the typing rules. Linear variables are typed in a singleton
context (Var). Abstraction (Abs) and application (App) follow the rules of the
linear λ-calculus. Rules for multiplicative products (pairs) and additive coprod-
ucts (sums) are routine, where pair introduction (Pair) adds the contexts used
to type the pair’s constituent subterms. Pair elimination (LetPair) binds a
pair’s components to two linear variables in the scope of the body t2. The Inl
and Inr rules handle the typing of constructors for the sum type A⊕B . Elimina-
tion of sums (Case) takes the least upper bound (defined above) of the contexts
used to type the two branches of the case.

The Weak rule captures weakening of assumptions graded by 0 (where [Δ]0
denotes a context containing only graded assumptions graded by 0). Dereliction
(Der), allows a linear assumption to be converted to a graded assumption with
grade 1. Grade approximation is captured by the Approx rule, which allows a

156 J. Hughes and D. Orchard

grade r to be converted to another grade s, providing that r is approximated by s,
where the relation
 is the pre-order provided with the semiring. Introduction
and elimination of the graded modality is provided by the Pr and Let rules
respectively. The Pr rule propagates the grade r to the assumptions through
scalar multiplication of Γ by r where every assumption in Γ must already be
graded (written [Γ] in the rule), defined:

Definition 3 (Scalar context multiplication)

r ∗ ∅ = ∅ r ∗ (Γ, x : [A]s) = (r ∗ Γ), x : [A](r∗s)

The Let rule eliminates a graded modal value �rA into a graded assumption
x : [A]r with a matching grade in the scope of the let body.

We now give three examples of different graded modalities.

Example 1. The natural number semiring with discrete ordering (N, ∗, 1,+, 0,≡)
provides a graded modality that counts exactly how many times non-linear values
are used. As a simple example, the S combinator is typed and defined:

s : (A � (B � C)) � (A � B) � (�2A � C)
s = λx .λy .λz ′. let [z] = z ′ in (x z) (y z)

The graded modal value z′ captures the ‘capability’ for a value of type A to
be used twice. This capability is made available by eliminating � (via let) to
the variable z, which is graded z : [A]2 in the scope of the body.

Example 2. Exact usage analysis is less useful when control-flow is involved, e.g.,
eliminating sum types where each control-flow branch uses variables differently.
The above N-semiring can be imbued with a notion of approximation via less-
than-equal ordering, providing upper bounds. A more expressive semiring is that
of natural number intervals [32], given by pairs N×N written [r ...s] here for the
lower-bound r ∈ N and upper-bound usage s ∈ N with 0 = [0...0] and 1 = [1...1],
addition and multiplication defined pointwise, and ordering [r ...s]
 [r ′...s ′] =
r ′ ≤ r∧s ≤ s ′. Then a coproduct elimination function can be written and typed:

⊕e : �[0...1](A � C) � �[0...1](B � C) � (A ⊕ B) � C
⊕e = λx ′.λy ′.λz .let [x] = x ′ in let [y] = y ′ in (case z of inl u → x u| inr v → y v)

Linear logic’s exponential !A is given by �[0...∞]A with intervals over N ∪ {∞}
where ∞ is absorbing for all operations, except multiplying by 0.

Example 3. Graded modalities can capture a form of information-flow security,
tracking the flow of labelled data through a program [32], with a lattice-based
semiring on R = {Unused
 Hi
 Lo} where 0 = Unused, 1 = Hi, + = � and
if r = Unused or s = Unused then r ∗ s = Unused otherwise r ∗ s = �. This

Resourceful Program Synthesis from Graded Linear Types 157

allows the following well-typed program, eliminating a pair of Lo and Hi security
values, picking the left one to pass to a continuation expecting a Lo input:

noLeak : (�LoA ⊗ �HiA) � (�Lo(A ⊗ 1) � B) � B
noLeak = λz .λu.let 〈x ′, y ′〉 = z in let [x] = x ′ in let [y] = y ′ in u [〈x , ()〉]

Metatheory. The admissibility of substitution is a key result that holds for this
language [32], which is leveraged in soundness of the synthesis calculi.

Lemma 1. (Admissibility of substitution). Let Δ � t ′ : A, then:

– (Linear) If Γ, x : A, Γ ′ � t : B then Γ + Δ + Γ ′ � [t ′/x]t : B
– (Graded) If Γ, x : [A]r , Γ ′ � t : B then Γ + (r ∗ Δ) + Γ ′ � [t ′/x]t : B

3 The Synthesis Calculi

We present two synthesis calculi with subtractive and additive resource manage-
ment schemes, extending an input-output approach to graded modal types. The
structure of the synthesis calculi mirrors a cut-free sequent calculus, with left
and right rules for each type constructor. Right rules synthesise an introduction
form for the goal type. Left rules eliminate (deconstruct) assumptions so that
they may be used inductively to synthesise subterms.

3.1 Subtractive Resource Management

Our subtractive approach follows the philosophy of earlier work on linear logic
proof search [7,20], structuring synthesis rules around an input context of the
available resources and an output context of the remaining resources that can
be used to synthesise subsequent subterms. Synthesis rules are read bottom-up,
with judgments Γ � A ⇒− t ; Δ meaning from the goal type A we can synthesise
a term t using assumptions in Γ , with output context Δ. We describe the rules
in turn to aid understanding. The appendix [22] collects the rules for reference.

Variable terms can be synthesised from linear or graded assumptions by rules:

Γ, x : A � A ⇒− x ; Γ
LinVar− ∃s. r � s + 1

Γ, x : [A]r � A ⇒− x ; Γ, x : [A]s
GrVar−

On the left, a variable x may be synthesised for the goal A if a linear assumption
x : A is present in the input context. The input context without x is then
returned as the output context, since x has been used. On the right, we can
synthesise a variable x for A we have a graded assumption of x matching the
type. However, the grading r must permit x to be used once here. Therefore, the
premise states that there exists some grade s such that grade r approximates
s+1. The grade s represents the use of x in the rest of the synthesised term, and

158 J. Hughes and D. Orchard

thus x : [A]s is in the output context. For the natural numbers semiring, this
constraint is satisfied by s = r − 1 whenever r �= 0, e.g., if r = 3 then s = 2. For
intervals, the role of approximation is more apparent: if r = [0...3] then this rule
is satisfied by s = [0...2] where s+1 = [0...2]+[1...1] = [1...3]
 [0...3]. Thus, this
premise constraint avoids the need for an additive inverse. In the implementation,
the constraint is discharged via an SMT solver, where an unsatisfiable result
terminates this branch of synthesis.

In typing, λ-abstraction binds linear variables to introduce linear functions.
Synthesis from a linear function type therefore mirrors typing:

Γ, x : A � B ⇒− t ; Δ x �∈ |Δ|
Γ � A � B ⇒− λx .t ; Δ

R�−

Thus, λx.t can be synthesised given that t can be synthesised from B in the
context of Γ extended with a fresh linear assumption x : A. To ensure that x is
used linearly by t we must therefore check that it is not present in Δ.

The left-rule for linear function types then synthesises applications (as
in [20]):

Γ, x2 : B � C ⇒− t1; Δ1 x2 �∈ |Δ1| Δ1 � A ⇒− t2; Δ2

Γ, x1 : A � B � C ⇒− [(x1 t2)/x2]t1; Δ2

L�−

The rule synthesises a term for type C in a context that contains an assumption
x1 : A � B . The first premise synthesises a term t1 for C under the context
extended with a fresh linear assumption x2 : B , i.e., assuming the result of x1.
This produces an output context Δ1 that must not contain x2, i.e., x2 is used by
t1. The remaining assumptions Δ1 provide the input context to synthesise t2 of
type A: the argument to the function x1. In the conclusion, the application x1 t2
is substituted for x2 inside t1, and Δ2 is the output context.

Note that this rule synthesises the application of a function given by a linear
assumption. What if we have a graded assumption of function type? Rather than
duplicating every left rule for both linear and graded assumptions, we mirror the
dereliction typing rule (converting a linear assumption to graded) as:

Γ, x : [A]s , y : A � B ⇒− t ; Δ, x : [A]s′ y �∈ |Δ| ∃s. r � s + 1
Γ, x : [A]r � B ⇒− [x/y]t ; Δ, x : [A]s′

der−

Dereliction captures the ability to reuse a graded assumption being considered in
a left rule. A fresh linear assumption y is generated that represents the graded
assumption’s use in a left rule, and must be used linearly in the subsequent
synthesis of t . The output context of this premise then contains x graded by s′,
which reflects how x was used in the synthesis of t , i.e. if x was not used then
s′ = s. The premise ∃s. r � s + 1 constrains the number of times dereliction can
be applied so that it does not exceed x’s original grade r.

Resourceful Program Synthesis from Graded Linear Types 159

For a graded modal goal type �rA, we synthesise a promotion [t] if we can
synthesise the ‘unpromoted’ t from A:

Γ � A ⇒− t ; Δ

Γ � �rA ⇒− [t]; Γ − r ∗ (Γ − Δ)
R�−

Recall that typing of a promotion [t] scales all the graded assumptions used
to type t by r. Therefore, to compute the output context we must “subtract”
r-times the use of the variables in t . However, in the subtractive model Δ tells
us what is left, rather than what is used. Thus we first compute the context
subtraction of Γ and Δ yielding the variables usage information about t :

Definition 4 (Context subtraction). For all Γ1, Γ2 where Γ2 ⊆ Γ1:

Γ1 − Γ2 =

⎧
⎪⎪⎨

⎪⎪⎩

Γ1 Γ2 = ∅
(Γ ′

1, Γ
′′
1) − Γ ′

2 Γ2 = Γ ′
2, x : A ∧ Γ1 = Γ ′

1, x : A, Γ ′′
1

((Γ ′
1, Γ

′′
1) − Γ ′

2), x : [A]q Γ2 = Γ ′
2, x : [A]s ∧ Γ1 = Γ ′

1, x : [A]r , Γ ′′
1

∧ ∃q . r � q + s ∧ ∀q′.r � q′ + s =⇒ q � q′

As in graded variable synthesis, context subtraction existentially quantifies a
variable q to express the relationship between grades on the right being “sub-
tracted” from those on the left. The last conjunct states q is the greatest element
(wrt. to the pre-order) satisfying this constraint, i.e., for all other q′ ∈ R sat-
isfying the subtraction constraint then q � q ′ e.g., if r = [2...3] and s = [0...1]
then q = [2...2] instead of, say, [0...1]. This maximality condition is important
for soundness (that synthesised programs are well-typed).

Thus for R�−, Γ − Δ is multiplied by the goal type grade r to obtain how
these variables are used in t after promotion. This is then subtracted from the
original input context Γ giving an output context containing the left-over vari-
ables and grades. Context multiplication requires that Γ−Δ contains only graded
variables, preventing the incorrect use of linear variables from Γ in t .

Synthesis of graded modality elimination, is handled by the L�− left rule:

Γ, x2 : [A]r � B ⇒− t ; Δ, x2 : [A]s 0
 s
Γ, x1 : �rA � B ⇒− let [x2] = x1 in t ; Δ

L�−

Given an input context comprising Γ and a linear assumption x1 of graded modal
type, we can synthesise an unboxing of x1 if we can synthesise a term t under
Γ extended with a graded assumption x2 : [A]r . This returns an output context
that must contain x2 graded by s with the constraint that s must approximate
0. This enforces that x2 has been used as much as required by the grade r.

160 J. Hughes and D. Orchard

The right and left rules for products, units, and sums, are then fairly straight-
forward following the subtractive resource model:

The L⊕− rule synthesises the left and right branches of a case statement that
may use resources differently. The output context therefore takes the greatest
lower bound (�) of Δ1 and Δ2. We elide definition of context � as it has the
same shape as � for contexts (Definition 2), just replacing � with � on grades.

As an example of �, consider the semiring of intervals over natural numbers
and two judgements that could be used as premises for the (L⊕−) rule:

Γ, y : [A′][0...5], x2 : A � C ⇒− t1; y : [A′][2...5]

Γ, y : [A′][0...5], x3 : B � C ⇒− t2; y : [A′][3...4]

where t1 uses y such that there are 2–5 uses remaining and t2 uses y such that
there are 3–4 uses left. To synthesise case x1 of inl x2 → t1| inr x3 → t2 the
output context must be pessimistic about what resources are left, thus we take
the greatest-lower bound yielding the interval [2 . . . 4] here: we know y can be
used at least twice and at most 4 times in the rest of the synthesised program.

This completes subtractive synthesis. We conclude with a key result, that
synthesised terms are well-typed at the type from which they were synthesised:

Lemma 2. (Subtractive synthesis soundness). For all Γ and A then:

Γ � A ⇒− t ; Δ =⇒ Γ − Δ � t : A

i.e. t has type A under context Γ −Δ, that contains just those linear and graded
variables with grades reflecting their use in t. The appendix [22] provides the
proof.

Resourceful Program Synthesis from Graded Linear Types 161

3.2 Additive Resource Management

We now propose a dual additive resource management approach. Additive syn-
thesis also uses the input-output context approach, but where output contexts
describe exactly which assumptions were used to synthesise a term, rather than
which assumptions are still available. Additive synthesis rules are read bottom-
up, with Γ � A ⇒+ t ; Δ meaning that from the type A we synthesise a term t
using exactly the assumptions Δ that originate from the input context Γ .

We unpack the rules, starting with variables:

Γ, x : A � A ⇒+ x ; x : A
LinVar+

Γ, x : [A]r � A ⇒+ x ; x : [A]1
GrVar+

For a linear assumption, the output context contains just the variable that was
synthesised. For a graded assumption x : [A]r , the output context contains the
assumption graded by 1. To synthesise a variable from a graded assumption, we
must check that the use is compatible with the grade. The subtractive approach
handled this rule (GrVar−) by a constraint ∃s. r � s + 1. Here however, the
point at which we check that a graded assumption has been used according to
the grade takes place in the L�+ rule, where graded assumptions are bound:

Γ, x2 : [A]r � B ⇒+ t ; Δ if x2 : [A]s ∈ Δ then s
 r else 0
 r
Γ, x1 : �rA � B ⇒+ let [x2] = x1 in t ; (Δ\x2), x1 : �rA

L�+

Here, t is synthesised under a fresh graded assumption x2 : [A]r . This produces
an output context containing x2 with some grade s that describes how x2 is
used in t . An additional premise requires that the original grade r approximates
either s if x2 appears in Δ or 0 if it does not, ensuring that x2 has been used
correctly. For the N-semiring with equality as the ordering, this would ensure
that a variable has been used exactly the number of times specified by the grade.

Right and left rules for � have a similar shape to the subtractive calculus:

Synthesising an abstraction (R�+) requires that x : A is in the output context
of the premise, ensuring that linearity is preserved. Likewise for application
(L�+), the output context of the first premise must contain the linearly bound
x2 : B and the final output context must contain the assumption being used in
the application x1 : A � B . This output context computes the context addition
(Definition 1) of both output contexts of the premises Δ1 + Δ2. If Δ1 describes
how assumptions were used in t1 and Δ2 respectively for t2, then the addition of
these two contexts describes the usage of assumptions for the entire subprogram.

162 J. Hughes and D. Orchard

Recall, context addition ensures that a linear assumption may not appear in both
Δ1 and Δ2, preventing us from synthesising terms that violate linearity.

As in the subtractive calculus, we avoid duplicating left rules to match graded
assumptions by giving a synthesising version of dereliction:

Γ, x : [A]s , y : A � B ⇒+ t ; Δ, y : A
Γ, x : [A]s � B ⇒+ [x/y]t ; Δ + x : [A]1

der+

The fresh linear assumption y : A must appear in the output context of the
premise, ensuring it is used. The final context therefore adds to Δ an assumption
of x graded by 1, accounting for this use of x (temporarily renamed to y).

Synthesis of a promotion is considerably simpler in the additive approach.
In subtractive resource management it was necessary to calculate how resources
were used in the synthesis of t before then applying the scalar context multipli-
cation by the grade r and subtracting this from the original input Γ . In additive
resource management, however, we can simply apply the multiplication directly
to the output context Δ to obtain how our assumptions are used in [t]:

Γ � A ⇒+ t ; Δ

Γ � �rA ⇒+ [t]; r ∗ Δ
R�+

As in the subtractive approach, the right and left rules for products, units, and
sums follow fairly straightforwardly from the resource scheme:

Rule (L⊕+) takes the least-upper bound of the premise’s output contexts (Def-
inition 2).

Lemma 3. (Additive synthesis soundness). For all Γ and A:

Γ � A ⇒+ t ; Δ =⇒ Δ � t : A

The appendix [22] provides the proof.

Resourceful Program Synthesis from Graded Linear Types 163

Additive Pruning. As seen above, the additive approach delays checking
whether a variable is used according to its linearity/grade until it is bound.
We hypothesise that this can lead additive synthesis to explore many ultimately
ill-typed (or ill-resourced) paths for too long. Subsequently, we define a “prun-
ing” variant of any additive rules with multiple sequenced premises. For (R⊗+)
this is:

Instead of passing Γ to both premises, Γ is the input only for the first premise.
This premise outputs context Δ1 that is subtracted from Γ to give the input
context of the second premise. This provides an opportunity to terminate the cur-
rent branch of synthesis early if Γ −Δ1 does not contain the necessary resources
to attempt the second premise. The (L�+) rule is similarly adjusted.

Lemma 4. (Additive pruning synthesis soundness). For all Γ and A:

Γ � A ⇒+ t ; Δ =⇒ Δ � t : A

The appendix [22] provides the proof.

3.3 Focusing

The two calculi provide a foundation for a synthesis algorithm. However, in their
current forms, both synthesis calculi are highly non-deterministic: for each rule
there are multiple rules which may be applied to synthesise the premise(s).

We apply the idea of focusing [3] to derive two focusing calculi which are
equivalent to the former in expressivity, but with a reduced degree of non-
determinism in the rules that may be applied. Focusing is a proof search tech-
nique based on the idea that some rules are invertible, i.e. whenever the premises
of a rule are derivable, the conclusion is also derivable. Rules with this property
can be applied eagerly in the synthesis of a term. When we arrive at a goal whose
applicable rules are not invertible, we focus on either the goal type or a particular
assumption by applying a chain of non-invertible rules until we reach a goal to
which invertible rules can be applied. The appendix [22] gives focusing versions
of the two calculi, which form the basis of our implementation. The proofs for
the soundness of these focusing calculi can also be found in the appendix.

4 Evaluation

Prior to evaluation, we made the following hypotheses about the relative perfor-
mance of the additive versus subtractive approaches:

1. Additive synthesis should make fewer calls to the solver, with lower complex-
ity theorems (fewer quantifiers). Dually, subtractive synthesis makes more
calls to the solver with higher complexity theorems (more quantifiers);

164 J. Hughes and D. Orchard

2. For complex problems, additive synthesis will explore more paths as it cannot
tell whether a variable is not well-resourced until closing a binder; additive
pruning and subtractive will explore fewer paths as they can fail sooner.

3. A corollary of the above two: simple examples will likely be faster in additive
mode, but more complex examples will be faster in subtractive mode.

Methodology. We implemented our approach as a synthesis tool for Granule,
integrated with its core tool. Granule features ML-style polymorphism (rank-0
quantification) but we do not address polymorphism here. Instead, programs are
synthesised from type schemes treating universal type variables as logical atoms.
We discuss additional details of the implementation at the end of this section.

To evaluate our synthesis tool we developed a suite of benchmarks comprising
Granule type schemes for a variety of operations using linear and graded modal
types. We divide our benchmarks into several classes of problem:

– Hilbert: the Hilbert-style axioms of intuitionistic logic (including SKI com-
binators), with appropriate N and N-interval grades where needed (see, e.g.,
S combinator in Example 1 or coproduct elimination in Example 2).

– Comp: various translations of function composition into linear logic: mul-
tiplicative, call-by-value and call-by-name using ! [17], I/O using ! [28], and
coKleisli composition over N and arbitrary semirings: e.g. ∀r, s ∈ R:

comp-coKR : �r (�sA � B) � (�rB � C) � �r∗sA � C

– Dist: distributive laws of various graded modalities over functions, sums, and
products [23], e.g., ∀r ∈ N, or ∀r ∈ R in any semiring, or r = [0...∞]:

pull⊕ : (�rA⊕�rB) � �r (A⊕B) push� : �r (A � B) � �rA � �rB

– Vec: map operations on vectors of fixed size encoded as products, e.g.:

vmap5 : �5(A � B) � ((((A⊗A)⊗A)⊗A)⊗A) � ((((B⊗B)⊗B)⊗B)⊗B)

– Misc: includes Example 3 (information-flow security) and functions which
must share or split resources between graded modalities, e.g.:

share : �4A � �6A � �2(((((A ⊗ A) ⊗ A) ⊗ A) ⊗ A) � B) � (B ⊗ B)

The appendix [22] lists the type schemes for these synthesis problems (32
in total). We found that Z3 is highly variable in its solving time, so timing
measurements are computed as the mean of 20 trials. We used Z3 version 4.8.8
on a Linux laptop with an Intel i7-8665u @ 4.8 Ghz and 16 Gb of RAM.

Resourceful Program Synthesis from Graded Linear Types 165

Table 1. Results. μT in ms to 2 d.p. with standard sample error in brackets

Results and Analysis. For each synthesis problem, we recorded whether syn-
thesis was successful or not (denoted � or ×), the mean total synthesis time
(μT), the mean total time spent by the SMT solver (μsmt), and the number
of calls made to the SMT solver (N). Table 1 summarises the results with the
fastest case for each benchmark highlighted. For all benchmarks that used the
SMT solver, the solver accounted for 91.73%–99.98% of synthesis time, so we
report only the mean total synthesis time μT . We set a timeout of 120 s.

Additive vs. Subtractive. As expected, the additive approach generally synthe-
sises programs faster than the subtractive. Our first hypothesis (that the additive
approach in general makes fewer calls to the SMT solver) holds for almost all
benchmarks, with the subtractive approach often far exceeding the number made
by the additive. This is explained by the difference in graded variable synthe-
sis between approaches. In the additive, a constant grade 1 is given for graded

166 J. Hughes and D. Orchard

assumptions in the output context, whereas in the subtractive, a fresh grade
variable is created with a constraint on its usage which is checked immediately.
As the total synthesis time is almost entirely spent in the SMT solver (more than
90%), solving constraints is by far the most costly part of synthesis leading to
the additive approach synthesising most examples in a shorter amount of time.

Graded variable synthesis in the subtractive case also results in several exam-
ples failing to synthesise. In some cases, e.g., the first three comp benchmarks,
the subtractive approach times-out as synthesis diverges with constraints grow-
ing in size due to the maximality condition and absorbing behaviour of [0...∞]
interval. In the case of coK-R and coK-N, the generated constraints have the
form ∀r.∃s.r � s+1 which is not valid ∀r ∈ N (e.g., when r = 0), which suggests
that the subtractive approach does not work well for polymorphic grades. As
further work, we are considering an alternate rule for synthesising promotion
with constraints of the form ∃s.s = s′ ∗r, i.e., a multiplicative inverse constraint.

In more complex examples we see evidence to support our second hypothesis.
The share problem requires a lot of graded variable synthesis which is problem-
atic for the additive approach, for the reasons described in the second hypothesis.
In contrast, the subtractive approach performs better, with μT = 190.07 ms as
opposed to additive’s 268.95 ms. However, additive pruning outperforms both.

Additive Pruning. The pruning variant of additive synthesis (where subtraction
takes place in the premises of multiplicative rules) had mixed results compared
to the default. In simpler examples, the overhead of pruning (requiring SMT
solving) outweighs the benefits obtained from reducing the space. However, in
more complex examples which involve synthesising many graded variables (e.g.
share), pruning is especially powerful, performing better than the subtractive
approach. However, additive pruning failed to synthesis two examples which are
polymorphic in their grade (⊗-N) and in the semiring/graded-modality (⊗-R).

Overall, the additive approach outperforms the subtractive and is successful
at synthesising more examples, including ones polymorphic in grades and even
the semiring itself. Given that the literature on linear logic theorem proving
is typically subtractive, this is an interesting result. Going forward, a mixed
approach between additive and additive pruning may be possible, selecting the
algorithm, or even the rules, depending on the class of problem. Exploring this,
and further optimisations and improvements, is further work.

Additional Implementation Details. Constraints on resource usage are han-
dled via Granule’s existing symbolic engine, which compiles constraints on grades
(for various semirings) to the SMT-lib format for Z3 [30]. We use the LogicT
monad for backtracking search [26] and the Scrap Your Reprinter library for
splicing synthesised code into syntactic “holes”, preserving the rest of the pro-
gram text [10]. The implementation of the rule for additive dereliction (der+)
requires some care. A näıve implementation of this rule would allow the con-
struction of an infinite chain of dereliction applications, by repeatedly applying
the rule to the same graded assumption, as the correct usage of the assumption’s

Resourceful Program Synthesis from Graded Linear Types 167

grade is only verified after it has been used to synthesise a sub-term. Our solution
is to simply disallow immediate consecutive applications of the dereliction rule
in additive synthesis, requiring that another rule be applied between multiple
applications of the dereliction rule to any assumption. If no other rules can be
applied, then the branch of synthesis is terminated.

5 Discussion

Further Related Work. Before Hodas and Miller [20], the problem of resource
non-determinism was first identified by Harland and Pym [19]. Their solution
delays splitting of contexts at a multiplicative connective. They later explored the
implementation details of this approach, proposing a solution where proof search
is formulated in terms of constraints on propositions. The logic programming
language Lygon [1] implements this approach.

Our approach to synthesis implements a backward style of proof search: start-
ing from the goal, recursively search for solutions to subgoals. In contrast to this,
forward reasoning approaches attempt to reach the goal by building subgoals
from previously proved subgoals until the overall goal is proved. Pfenning and
Chaudhuri consider forward approaches to proof search in linear logic using the
inverse method [11] where the issue of resource non-determinism that is typical
to backward approaches is absent [8,9].

Non-idempotent intersection types systems have a similar core structure
resembling the linear λ-calculus with quantitative aspects akin to grading [6]. It
therefore seems likely that the approaches of this paper could be applied in this
setting and used, for example, as way to enhance or even improve existing work
on the inhabitation problem for non-idempotent intersection types [5]: a synthe-
sised term gives a proof of inhabitation. This is left as further work, including
formalising the connection between non-idempotent intersections and grading.

Next Steps and Conclusions. Our synthesis algorithms are now part of the
Granule toolchain with IDE support, allowing programmers to insert a “hole” in
a term and, after executing a keyboard shortcut, Granule tries to synthesise the
type of the hole, pretty-printing generated code and inserting it at the cursor.

There are various extensions which we are actively pursuing, including syn-
thesis for arbitrary user-defined indexed data types (GADTs), polymorphism,
and synthesis of recursive functions. We plan to study various optimisations to
the approaches considered here, as well as reducing the overhead of starting the
SMT solver each time by instead running an “online” SMT solving procedure.
We also plan to evaluate the approach on the extended linear logical benchmarks
of Olarte et al. [31]. Although our goal is to create a practical program synthesis
tool for common programming tasks rather than a general purpose proof search
tool, the approach here also has applications to automated theorem proving.

168 J. Hughes and D. Orchard

Acknowledgements. Thanks to Benjamin Moon, Harley Eades III, participants at
LOPSTR 2020, and the anonymous reviewers for their helpful comments. This work is
supported by an EPSRC Doctoral Training Award and EPSRC grant EP/T013516/1
(Verifying Resource-like Data Use in Programs via Types).

References

1. Logic programming with linear logic. http://www.cs.rmit.edu.au/lygon/, Accessed
19 June 2020

2. Allais, G.: Typing with leftovers-a mechanization of intuitionistic multiplicative-
additive linear logic. In: 23rd International Conference on Types for Proofs
and Programs (TYPES 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik
(2018)

3. Andreoli, J.M.: Logic programming with focusing proofs in linear logic. J. Logic
Comput. 2(3), 297–347 (1992). https://doi.org/10.1093/logcom/2.3.297

4. Brunel, A., Gaboardi, M., Mazza, D., Zdancewic, S.: A core quantitative coeffect
calculus. In: Shao, Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 351–370. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54833-8 19

5. Bucciarelli, A., Kesner, D., Rocca, S.R.D.: Inhabitation for non-idempotent inter-
section types. Log. Methods Comput. Sci. 14(3) (2018). https://doi.org/10.23638/
LMCS-14(3:7)2018

6. Bucciarelli, A., Kesner, D., Ventura, D.: Non-idempotent intersection types for the
lambda-calculus. Log. J. IGPL 25(4), 431–464 (2017). https://doi.org/10.1093/
jigpal/jzx018

7. Cervesato, I., Hodas, J.S., Pfenning, F.: Efficient resource management for linear
logic proof search. Theor. Comput. Sci. 232(1), 133–163 (2000). https://doi.org/
10.1016/S0304-3975(99)00173-5

8. Chaudhuri, K., Pfenning, F.: A focusing inverse method theorem prover for first-
order linear logic. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632,
pp. 69–83. Springer, Heidelberg (2005). https://doi.org/10.1007/11532231 6

9. Chaudhuri, K., Pfenning, F.: Focusing the inverse method for linear logic. In: Ong,
L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 200–215. Springer, Heidelberg (2005).
https://doi.org/10.1007/11538363 15

10. Clarke, H., Liepelt, V.B., Orchard, D.: Scrap your Reprinter (2017). unpublished
manuscript

11. Degtyarev, A., Voronkov, A.: Chapter 4 - the inverse method. In: Robinson, A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning, North-Holland, Amster-
dam, pp. 179–272 (2001). https://doi.org/10.1016/B978-044450813-3/50006-0

12. Frankle, J., Osera, P.M., Walker, D., Zdancewic, S.: Example-directed synthesis: a
type-theoretic interpretation. ACM SIGPLAN Not. 51(1), 802–815 (2016)

13. Gaboardi, M., Haeberlen, A., Hsu, J., Narayan, A., Pierce, B.C.: Linear dependent
types for differential privacy. SIGPLAN Not. 48(1), 357–370 (2013). https://doi.
org/10.1145/2480359.2429113

14. Gaboardi, M., Katsumata, S., Orchard, D.A., Breuvart, F., Uustalu, T.: Combin-
ing effects and coeffects via grading. In: Garrigue, J., Keller, G., Sumii, E. (eds.)
Proceedings of the 21st ACM SIGPLAN International Conference on Functional
Programming, ICFP 2016, Nara, Japan, 18–22 September 2016, pp. 476–489. ACM
(2016). https://doi.org/10.1145/2951913.2951939

15. Gentzen, G.: Untersuchungen über das logische schließen. ii. Mathematische
Zeitschrift 39, 405–431 (1935)

http://www.cs.rmit.edu.au/lygon/
https://doi.org/10.1093/logcom/2.3.297
https://doi.org/10.1007/978-3-642-54833-8_19
https://doi.org/10.23638/LMCS-14
https://doi.org/10.23638/LMCS-14
https://doi.org/10.1093/jigpal/jzx018
https://doi.org/10.1093/jigpal/jzx018
https://doi.org/10.1016/S0304-3975(99)00173-5
https://doi.org/10.1016/S0304-3975(99)00173-5
https://doi.org/10.1007/11532231_6
https://doi.org/10.1007/11538363_15
https://doi.org/10.1016/B978-044450813-3/50006-0
https://doi.org/10.1145/2480359.2429113
https://doi.org/10.1145/2480359.2429113
https://doi.org/10.1145/2951913.2951939

Resourceful Program Synthesis from Graded Linear Types 169

16. Ghica, D.R., Smith, A.I.: Bounded linear types in a resource semiring. In: Shao,
Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 331–350. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-54833-8 18

17. Girard, J.Y.: Linear logic. Theor. Comput. Sci. 50(1), 1–101 (1987). https://doi.
org/10.1016/0304-3975(87)90045-4

18. Girard, J.Y., Scedrov, A., Scott, P.J.: Bounded linear logic: a modular approach
to polynomial-time computability. Theor. Comput. Sci. 97(1), 1–66 (1992)

19. Harland, J., Pym, D.J.: Resource-distribution via boolean constraints. CoRR
cs.LO/0012018 (2000). https://arxiv.org/abs/cs/0012018

20. Hodas, J., Miller, D.: Logic programming in a fragment of intuitionistic linear logic.
Inf. Comput. 110(2), 327–365 (1994). https://doi.org/10.1006/inco.1994.1036

21. Howard, W.A.: The formulae-as-types notion of construction. In: Seldin, J.P., Hind-
ley, J.R. (eds.) To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus
and Formalism. Academic Press (1980)

22. Hughes, J., Orchard, D.: Resourceful program synthesis from graded linear types
(Appendix) (2020). https://doi.org/10.5281/zenodo.4314644

23. Hughes, J., Vollmer, M., Orchard, D.: Deriving distributive laws for graded linear
types (2020), unpublished manuscript

24. Katsumata, S.: Parametric effect monads and semantics of effect systems. In:
Jagannathan, S., Sewell, P. (eds.) The 41st Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL ’14, San Diego, CA, USA,
20–21 January 2014, pp. 633–646. ACM (2014). https://doi.org/10.1145/2535838.
2535846

25. Katsumata, S.: A double category theoretic analysis of graded linear exponential
comonads. In: Baier, C., Dal Lago, U. (eds.) FoSSaCS 2018. LNCS, vol. 10803, pp.
110–127. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89366-2 6

26. Kiselyov, O., Shan, C.c., Friedman, D.P., Sabry, A.: Backtracking, interleaving,
and terminating monad transformers: (functional pearl). SIGPLAN Not. 40(9),
192–203 (2005). https://doi.org/10.1145/1090189.1086390

27. Knoth, T., Wang, D., Polikarpova, N., Hoffmann, J.: Resource-Guided Program
Synthesis. CoRR abs/1904.07415 (2019). http://arxiv.org/abs/1904.07415

28. Liang, C., Miller, D.: Focusing and polarization in linear, intuitionistic, and clas-
sical logics. Theor. Comput. Sci. 410(46), 4747–4768 (2009)

29. Manna, Z., Waldinger, R.: A deductive approach to program synthesis. ACM Trans.
Program. Lang. Syst. (TOPLAS) 2(1), 90–121 (1980)

30. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

31. Olarte, C., de Paiva, V., Pimentel, E., Reis, G.: The ILLTP library for intuitionistic
linear logic. In: Ehrhard, T., Fernández, M., de Paiva, V., de Falco, L.T. (eds.) Pro-
ceedings Joint International Workshop on Linearity & Trends in Linear Logic and
Applications, Linearity-TLLA@FLoC 2018, Oxford, UK, 7–8 July 2018. EPTCS,
vol. 292, pp. 118–132 (2018). https://doi.org/10.4204/EPTCS.292.7

32. Orchard, D., Liepelt, V., Eades III, H.E.: Quantitative program reasoning with
graded modal types. PACMPL 3(ICFP), 110:1–110:30 (2019). https://doi.org/10.
1145/3341714

33. Osera, P.M., Zdancewic, S.: Type-and-example-directed program synthesis. SIG-
PLAN Not. 50(6), 619–630 (2015). https://doi.org/10.1145/2813885.2738007

34. Polikarpova, N., Solar-Lezama, A.: Program synthesis from Polymorphic Refine-
ment Types. CoRR abs/1510.08419 (2015). http://arxiv.org/abs/1510.08419

https://doi.org/10.1007/978-3-642-54833-8_18
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://arxiv.org/abs/cs/0012018
https://doi.org/10.1006/inco.1994.1036
https://doi.org/10.5281/zenodo.4314644
https://doi.org/10.1145/2535838.2535846
https://doi.org/10.1145/2535838.2535846
https://doi.org/10.1007/978-3-319-89366-2_6
https://doi.org/10.1145/1090189.1086390
http://arxiv.org/abs/1904.07415
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.4204/EPTCS.292.7
https://doi.org/10.1145/3341714
https://doi.org/10.1145/3341714
https://doi.org/10.1145/2813885.2738007
http://arxiv.org/abs/1510.08419

170 J. Hughes and D. Orchard

35. Smith, C., Albarghouthi, A.: Synthesizing differentially private programs. Proc.
ACM Program. Lang. 3(ICFP) (2019). https://doi.org/10.1145/3341698

36. Zalakain, U., Dardha, O.: Pi with leftovers: a mechanisation in Agda. arXiv
preprint arXiv:2005.05902 (2020)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1145/3341698
http://arxiv.org/abs/2005.05902
http://creativecommons.org/licenses/by/4.0/

	Resourceful Program Synthesis from Graded Linear Types
	1 Introduction
	2 Graded Linear -calculus
	3 The Synthesis Calculi
	3.1 Subtractive Resource Management
	3.2 Additive Resource Management
	3.3 Focusing

	4 Evaluation
	5 Discussion
	References

