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Abstract. Graded type systems are a class of type system for fine-
grained quantitative reasoning about data-flow in programs. Through
the use of resource annotations (or grades), a programmer can express
various program properties at the type level, reducing the number of ty-
peable programs. These additional constraints on types lend themselves
naturally to type-directed program synthesis, where this information can
be exploited to constrain the search space of programs. We present a syn-
thesis algorithm for a graded type system, where grades form an arbitrary
pre-ordered semiring. Harnessing this grade information in synthesis is
non-trivial, and we explore some of the issues involved in designing and
implementing a resource-aware program synthesis tool. In our evalua-
tion we show that by harnessing grades in synthesis, the majority of our
benchmark programs (many of which involve recursive functions over re-
cursive ADTs) require less exploration of the synthesis search space than
a purely type-driven approach and with fewer needed input-output ex-
amples. This type-and-graded-directed approach is demonstrated for the
research language Granule but we also adapt it for synthesising Haskell
programs that use GHC’s linear types extension.

1 Introduction

Type-directed program synthesis is a technique for synthesising programs from
user-provided type specifications. The technique has a long history intertwined
with proof search, thanks to the Curry-Howard correspondence [37, 22]. We
present a program synthesis approach that leverages the information of graded
type systems that track and enforce program properties related to data flow. Our
approach follows the concept of program synthesis as a form of proof search in
logic: given a type A we want to find a program term t which inhabits A. We
express this in terms of a synthesis judgement akin to typing or proof rules:

Γ ⊢ A ⇒ t

meaning that the term t can be synthesised for the goal type A under a context
of assumptions Γ . A calculus of synthesis rules for inductively defines the above
synthesis judgement for each type former of a language. For example, we may
define a synthesis rule for standard product types in the following way:

Γ ⊢ A ⇒ t1 Γ ⊢ B ⇒ t2

Γ ⊢ A× B ⇒ (t1, t2)
×Intro
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Reading ‘clockwise’ from the bottom-left: to synthesise a value of type A×B, we
synthesise a value of type A and then a value of type B and combine them into
a pair in the conclusion. The ‘ingredients’ for synthesising the subterms t1 and
t2 come from the free-variable assumptions Γ and any constructors of A and B.

Depending on the context, there may be many possible combinations of as-
sumptions to synthesise a pair. Consider the following type and partial program
with a hole (marked ?) specifying a position to perform program synthesis:

f : A → A → A → A×A f x y z = ?

The function has three parameters all of type A which can be used to synthesise
an expression of the goal type A × A. Expressing this synthesis problem as an
instantiation of the above ×Intro rule yields:

x : A, y : A, z : A ⊢ A ⇒ t1 x : A, y : A, z : A ⊢ A ⇒ t2

x : A, y : A, z : A ⊢ A× A ⇒ (t1, t2)
×Intro

Even in this simple setting, the number of possibilities starts to become unwieldy:
there are 32 possible candidate programs based on combinations of x, y and z. We
thus wish to constrain the number of choices required by the synthesis algorithm.
Many systems achieve this by allowing the user to specify additional information
about the desired program behaviour. For example, recent work extends type-
directed synthesis to refinement types [50], cost specifications [35], differential
privacy [52], ownership information [16], example-guided synthesis [15, 2] and ex-
amples integrated with types [17, 47]. The general idea is that the proof search /
program synthesis procedure can be pruned and refined given more information,
whether richer types, additional examples, or behavioural specifications.

We instead leverage the information contained in graded type systems which
constrain how data can be used by a program and thus reduce the number of
possible synthesis choices. Our hypothesis is that grade-and-type-directed syn-
thesis reduces the number of paths that need to be explored and the number of
input-output examples that are needed, thus potentially speeding up synthesis.

Graded type systems trace their roots to linear logic. In linear logic, data is
treated as though it were a finite resource which must be consumed exactly once,
disallowing arbitrary copying and discarding [20]. Non-linearity is captured by
the ! modal operator (the exponential modality). This gives a binary view—a
value may either be used exactly once or in a completely unconstrained way.
Bounded Linear Logic (BLL) refines this view, replacing ! with a family of in-
dexed modal operators where the index provides an upper bound on usage [21],
e.g., !≤4A represents a value A which may be used up to 4 times. Various works
have generalised BLL, resulting in graded type systems in which these indices
are drawn from an arbitrary pre-ordered semiring [12, 19, 49, 1, 14, 5, 39]. This
allows numerous program properties to be tracked and enforced statically. Such
systems are being deployed in language implementations, forming the basis of
Haskell’s linear types extension [8], Idris 2 [11], and the language Granule [45].

Returning to our example in a graded setting, the function’s parameters now
have grades that we choose, for the sake of example, to be particular natural

84 J. Hughes and D. Orchard



Program Synthesis from Graded Types 85

numbers describing the exact number of times the parameters must be used:

f : A2 → A0 → A0 → A×A f x y z = ?

The first A is annotated with a grade 2 meaning it must be used twice. The types
of y and z are graded with 0, enforcing zero usage, i.e., they cannot be used in the
body of f . The result is that there is only one (normal form) inhabitant for this
type: (x , x ). For synthesis, the other assumptions will not even be considered,
allowing pruning of branches which use resources in a way which violates the
grades. Natural number grades in this example explain how many times a value
can be used, but we may instead represent different program properties such as
sensitivity, strictness, or security levels for tracking non-interference, all of which
are well-known instances of graded type systems [45, 18, 1]. These examples are
all graded presentations of coeffects, tracking how a programs uses its context,
in contrast with graded types for effects [46, 32] which are not considered here.

In prior work, we built on proof search for linear logic [25], developing a
program synthesis technique for a linear type theory with graded modalities
□rA (where r is drawn from a semiring) and non-recursive types [27], which
we refer to as lgm i.e., linear-graded-modal. We adapt some of these ideas to a
setting which does not have a linear basis, but rather a type system where grades
are pervasive (such as the core of Haskell’s linear types extension [8]) alongside
recursive algebraic data types and input-output example specifications.

We make the following contributions:

– We define a synthesis calculus for a core graded type system, adapting the
context management scheme of lgm to a fully graded setting (rather than the
linear setting) and also addressing recursion, recursive types, and user-defined
ADTs, none of which were considered in previous work. Synthesised is proved
sound, i.e., synthesised programs are typed by the goal type.

– We implemented both the core type system as an extension of Granule and
implemented the synthesis calculus algorithmically.1 We elide full details of
the implementation but explain its connection to the formal development.

– We extend the Granule language to include input-output examples as specifi-
cations with first-class syntax (that is type checked), which complements the
synthesis algorithm and helps guide synthesis. This also aids our evaluation.

– We evaluate our tool on a benchmark suite of recursive functional programs
leveraging standard data types like lists, streams, and trees. We compare
against non-graded synthesis provided by Myth [47].

– Leveraging our calculus and implementation, we provide a prototype tool for
synthesising Haskell programs that use GHC 9’s linear types extension.

Roadmap Section 2 gives a brief overview of proof search in resourceful settings,
recalling the ‘resource management problem’. Section 3 then defines a core cal-
culus as the target of our synthesis approach. This type system closely resembles
various other graded systems [49, 39, 5, 1] including the core of Linear Haskell [8].
We implemented this system as a language extension of Granule [45].

1 Available at: github.com/granule-project/granule/releases/tag/v0.9.3.0

github.com/granule-project/granule/releases/tag/v0.9.3.0


Section 4 presents a calculus of synthesis rules for our language, showing how
grades enforce resource usage potentially leading to pruning of the search space
of candidate programs. We also discuss some details of the implementation of
our tool. We observe the close connection between synthesis in a graded setting
and automated theorem proving for linear logic, allowing us to exploit existing
optimisation techniques, such as the idea of a focused proof [4].

Section 5 evaluates our implementation on a set of 46 benchmarks, including
several non-trivial programs which use algebraic data types and recursion.

Section 6 demonstrates the practicality and versatility of our approach by
retargeting our algorithm to synthesise programs in Haskell from type signatures
that use GHC’s linear types extension (which is a graded type system [8]).

2 Overview of Resourceful Program Synthesis

Section 1 discussed synthesising pairs and how graded types could control the
number of times assumptions are used in a synthesised term. In a linear or graded
setting, synthesis must handle the resource management problem [24, 13]: how
do we give a resourceful accounting to the context during synthesis, respecting
its constraints? We overview the main ideas for addressing this problem.

Section 1 considered (Cartesian) product types ×, but we now switch to the
multiplicative product of linear types, which has the typing rule [20]:

Γ1 ⊢ t1 : A Γ2 ⊢ t2 : B

Γ1, Γ2 ⊢ (t1, t2) : A⊗B
⊗

Each subterm is typed by different contexts, which are combined by disjoint
union: a pair cannot be formed if variables are shared between Γ1 and Γ2, pre-
venting the structural behaviour of contraction where variables appear in mul-
tiple subterms. Näıvely converting this typing rule into a synthesis rule yields:

Γ1 ⊢ A ⇒ t1 Γ2 ⊢ B ⇒ t2

Γ1, Γ2 ⊢ A⊗ B ⇒ (t1, t2)
⊗Intro

As a declarative specification, this synthesis rule is sufficient. However, this rule
embeds a considerable amount of non-determinism when considered from an
algorithmic perspective. Reading ‘clockwise’ starting from the bottom-left, given
a context Γ and a goal A⊗B, we have to split Γ into disjoint subparts Γ1 and
Γ2 such that Γ = Γ1, Γ2 in order to pass Γ1 and Γ2 to the subgoals for A and
B. For a context of size n there are 2n possible such partitions! This quickly
becomes intractable. Instead, Hodas and Miller developed a technique for linear
logic programming [25], refined by Cervesato et al. [13], where proof search has
an input context of available resources and an output context of the remaining
resources, which we write as judgments Γ ⊢ A ⇒− t | Γ ′ for input context Γ
and output context Γ ′. Synthesis for multiplicative products then becomes:

Γ1 ⊢ A ⇒− t1 | Γ2 Γ2 ⊢ B ⇒− t2 | Γ3

Γ1 ⊢ A ⊗ B ⇒− (t1, t2) | Γ3

⊗−
Intro
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The resources remaining after synthesising the term t1 for A are Γ2, which are
then passed as the resources for synthesising the term of goal type B. There is an
ordering implicit here in ‘threading through’ the contexts between the premises.
For example, starting with a context x : A, y : B , this rule can be instantiated:

x : A, y : B ⊢ A ⇒− x | y : B y : B ⊢ B ⇒− y | ∅
x : A, y : B ⊢ A ⊗ B ⇒− (x , y) | ∅

⊗−
Intro (example)

This avoids the problem of splitting the input context, facilitating efficient proof
search for linear types. lgm adapted this idea to linear types augmented with
graded modalities [27]. We call the above approach subtractive resource manage-
ment due to its similarity to left-over type-checking for linear types [3, 54]. In a
graded modal setting however this approach is costly [27].

Graded type systems, as considered here, have typing contexts in which free
variables are assigned a type and a grade: an element of a semiring. For example,
the semiring of natural numbers describes how many times an assumption can
be used, in contrast to linear assumptions which must be used exactly once, e.g.,
the context x :2 A, y :0 B says that x must be used twice but y cannot be used.
The literature contains many example semirings for tracking other properties
as graded types, e.g., security labels [18, 1], intervals of usage [45], and hard-
ware schedules [19]. In a graded setting, the subtractive approach is problematic
though as there is not necessarily a notion of subtraction for grades.

Consider the above example but for a context with grades r and s on the
variables. Using a variable to synthesise a subterm no longer results in that
variable being ‘left out’ of the output context. Instead a new grade is given in
the output context relating to the input with a constraint capturing the usage:

∃r′.r′ + 1 = r x :r A, y :s B ⊢ A ⇒− x | x :r ′ A, y :s B
∃s′.s′ + 1 = s x :r ′ A, y :s B ⊢ B ⇒− y | x :r ′ A, y :s′ B

x :r A, y :s B ⊢ A ⊗ B ⇒− (x , y) | x :r ′ A, y :s′ B
⊗−

Intro (example)

In the first premise, x has grade r in the input context and x is synthesised for
the goal, thus the output context has some grade r′ where r′ + 1 = r, denoting
a use of x by the 1 element of the semiring. The second premise is similar.

For the natural numbers, if r = s = 1 then the above constraints are satisfied
by r′ = s′ = 0. In general, subtractive synthesis for graded types requires solving
many such existential equations over semirings, which introduces a new source
of non-determinism as there can be more than one solution. lgm implemented
this approach, leveraging SMT solving in the context of the Granule language,
but show that a dual additive approach has better performance. In the additive
approach, output contexts describe what was used instead of what is left. To
synthesise a term with multiple subterms (e.g. pairs), the output contexts of each
premise are added using the semiring addition applied pointwise on contexts to
produce the conclusion output. For pairs this looks like:

Γ ⊢ A ⇒+ t1 | ∆1 Γ ⊢ B ⇒+ t2 | ∆2

Γ ⊢ A ⊗ B ⇒+ (t1, t2) | ∆1 +∆2

⊗+
Intro
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The whole of Γ is used to synthesise both premises. For example, for goal A ⊗ A:

x :r A, y :s B ⊢ A ⇒+ x | x :1 A, y :0 B
x :r A, y :s B ⊢ A ⇒+ x | x :1 A, y :0 B

x :r A, y :s B ⊢ A ⊗ A ⇒+ (x , x ) | x :1+1 A, y :0 B
⊗+

Intro (example)

Synthesis rules for binders check whether the output context describes use that
is within the grades given by Γ , i.e., that synthesised terms are well-resourced.

Both subtractive and additive approaches avoid having to split the incoming
context Γ prior to synthesising subterms. In lgm, we evaluated both resource
management strategies in a synthesis tool for a subset of Granule’s ‘linear base’
system, finding that in most cases, the additive strategy was more efficient for
use in program synthesis with grades as it involves solving less complex pred-
icates; the subtractive approach typically incurs higher overhead due to the
existentially-derived notion of subtraction seen above. We therefore take the
additive approach to resource management.

lgm developed our approach for the linear λ-calculus with products, coprod-
ucts, and semiring-graded modalities. Here, we instead consider a graded calculus
without a linear base but where all assumptions are graded and function types
therefore incorporate a grade. Furthermore, our approach permits synthesis for
user-defined recursive ADTs to address more real-world problems.

3 Core Calculus

We define a core language with graded types, drawing from the coeffect calculus
of Petricek et al. [49], Quantitative Type Theory (QTT) [39, 5] and other graded
dependent type theories [42] (omitting dependent types from our language), the
calculus of Abel and Bernardy [1], and the core of the linear types extension to
Haskell [8]. This calculus shares much in common with languages based on linear
types, such as the graded monadic-comonadic calculus of [18], generalisations of
Bounded Linear Logic [12, 19], and Granule [45] in its original ‘linear base’ form.

Our target calculus extends the λ-calculus with grades and a graded necessity
modality as well as recursive algebraic data types. Parameterising the calculus is
a pre-ordered semiring (R, ∗, 1,+, 0,⊑) where pre-ordering requires that + and
∗ are monotonic wrt. ⊑. Throughout r, s range over R. The syntax of types is:

A,B ::= Ar → B | □rA | K A | µX.A | X | α (types)

K ::= Unit | ⊗ | ⊕ (type constructors)

τ ::= ∀α : κ.A (type schemes)

The function space Ar → B annotates the input type with a grade r ∈ R. The
graded necessity modality □rA is similarly annotated/indexed with a grade r .
Type constructors K include the multiplicative linear products and units, addi-
tive coproducts, and is extended by names of user-defined ADTs in the imple-
mentation. Constructors are applied to zero or more type parameters written A.
Recursive types µX.A are equi-recursive with type recursion variables X. Data
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constructors and other top-level definitions are typed by type schemes τ (rank-1
polymorphic types), which bind a set of kind-annotated universally quantified
type variables α : κ à la ML [40]. Subsequently, types may contain type variables
α. Kinds κ are standard, given in the appendix [28].

The term syntax comprises the λ-calculus, a promotion construct [t] which
introduces a graded modality, data constructors (C t1 ... tn), and elimination by
case expressions with patterns p, where [p] eliminates graded modalities:

t ::= x | λx .t | t1 t2 | [t ] | C t1 ... tn | case t of p1 7→ t1; ...; pn 7→ tn (terms)

p ::= x | | [p] | C p1 ... pn (patterns)

Example 1. In the type system (below), the k-combinator is typed as on the left:

k : A1 → B0 → A
k = λx.λy.x

k′ : (A×□0B)r → □rA
k′ = λp.case p of (x, y) 7→ case y of [y′] 7→ [x]

On the right, an uncurried version uses graded modalities. The argument pair
uses a graded modality to capture that the B part is not used. This graded
modal argument is eliminated by the second case with pattern [y′] binding y′

with grade 0, indicating it is unused. The return result is of graded modal type
with some grade r which is introduced by promotion [x]. Promotion propagates
its grade to its dependencies, i.e., the parameter p must also have grade r.

A useful semiring is of security levels [18, 1], e.g., R = {Private,Public} where
Private ⊑ Public, + = ∧ with 0 = Private, and ∗ = ∨ with 1 = Public. In the
above example, the second argument to k would thus be Private. If the return
result of k′ is for public consumption, i.e., r = Public, then the argument must
also be public, with the private component B not usable in the result.

Figure 1 defines the typing judgments of the form Σ;Γ ⊢ t : A assigning a
type A to a term t under type variables Σ. For such judgments we say that t is
both well typed and well resourced to highlight the role of grading in accounting
for resource use via the grades. Contexts Γ are given by:

∆,Γ ::= ∅ | Γ, x :r A (contexts)

That is, a context may be empty ∅ or extended with a graded assumption x :r
A. Graded assumptions must be used in a way which adheres to the grade r .
Structural exchange is permitted, allowing a context to be arbitrarily reordered.
A global context D parameterises the system, containing top-level definitions
and data constructors annotated with type schemes. A context of kind annotated
type variables Σ is used for kinding and when instantiating a type scheme from
D. Appendix A gives the (standard) kinding relation [28].

Variables are typed (rule Var) in a context where the variable x has grade 1
denoting its single use here. All other variable assumptions are given the grade
of the 0 semiring element (providing weakening), using scalar multiplication :

Definition 1 (Scalar multiplication). For a context Γ then r ·Γ scales each
assumption by grade r, where r · ∅ = ∅ and r · (Γ, x :s A) = (r ·Γ ), x :r · s A.
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Σ ⊢ A : Ty

Σ; 0 ·Γ, x :1 A ⊢ x : A
Var

(x : ∀α : κ.A′) ∈ D Σ ⊢ A = inst(∀α : κ.A′)

Σ; 0 ·Γ ⊢ x : A
Def

Σ;Γ, x :r A ⊢ t : B

Σ;Γ ⊢ λx .t : Ar → B
Abs

Σ;Γ1 ⊢ t1 : Ar → B Γ2 ⊢ t2 : A

Σ;Γ1 + r ·Γ2 ⊢ t1 t2 : B
App

Σ;Γ ⊢ t : A

Σ; r ·Γ ⊢ [t ] : □rA
Pr

Σ;Γ, x :r A, Γ ′ ⊢ t : B r ⊑ s

Σ;Γ, x :s A, Γ ′ ⊢ t : B
Approx

(C : ∀α : κ.B ′
1
q1 → ... → B ′

n
qn → K A′) ∈ D

Σ ⊢ B1
q1 → ...→ Bn

qn → K A = inst(∀α : κ.B ′
1
q1 → ...→ B ′

n
qn → K A′)

Σ; 0 ·Γ ⊢ C : B1
q1 → ...→ Bn

qn → K A
Con

Σ;Γ ⊢ t : A Σ; r ⊢ pi : A ▷ ∆i Σ;Γ ′,∆i ⊢ ti : B

Σ; r ·Γ + Γ ′ ⊢ case t of p1 7→ t1; ...; pn 7→ tn : B
Case

Σ;Γ ⊢ t : A[µX.A/X]

Σ;Γ ⊢ t : µX.A
µ1

Σ;Γ ⊢ t : µX.A

Σ;Γ ⊢ t : A[µX.A/X]
µ2

α : κ; ∅ ⊢ t : A

∅; ∅ ⊢ t : ∀α : κ.A
TopLevel

Fig. 1: Typing rules

Top-level definitions (Def) must be present in the global definition context D,
with the type scheme ∀α : κ.A′. The type A results from instantiating all of the
universal variables to types via the judgment Σ ⊢ A = inst(∀α : κ.A′) in a stan-
dard way as in Algorithm W [40]. Relatedly, the TopLevel rule types top-level
definitions with polymorphic type schemes (corresponding to the generalisation
rule [40]). Reading bottom up, universally quantified type variables are added
to the type variable context to form the type A of the definition term t.

Abstraction (Abs) binds a variable x which is used in the body t according to
grade r and thus this grade is captured onto the function arrow in the conclusion.
Relatedly, application (App) scales the context Γ2 of the argument term t2 by
the grade of the function arrow r since t2 is used according to r in t1 t2. To this
scaled context is ‘added’ the context Γ1 of the function term, via + defined:

Definition 2 (Context addition). For contexts Γ1, Γ2, then Γ1+Γ2 computes
the pointwise addition using semiring addition (providing contraction), where:

Γ + ∅ = Γ (Γ1, x :r A) + (Γ2, x :s A) = (Γ1 + Γ2), x :r+s A

(Γ1, x :r A) + Γ2 = (Γ1 + Γ2), x :r A if x ̸∈ dom(Γ2)

For example, (x :1 A, y :0 B) + x :1 A = x :(1+1) A, y :0 B . The operation is
commutative and undefined if the type of a variable differs in two contexts.
Introduction of graded modalities is achieved via promotion (Pr rule) where
grade r is propagated to the assumptions in Γ through the scaling of Γ by r .
Approximation (Approx) allows a grade r to be converted to grade s provided
that s approximates r as defined by the pre-order relation ⊑. This relation is
occasionally lifted pointwise to contexts: we write Γ ⊑ Γ ′ to mean that Γ ′ over-
approximates Γ , i.e., for all (x :r A) ∈ Γ then (x :r ′ A) ∈ Γ ′ and r ⊑ r ′.

90 J. Hughes and D. Orchard



Σ ⊢ A : Ty

Σ; r ⊢ x : A ▷ x :r A
PVar

Σ; r · s ⊢ p : A ▷ Γ

Σ; r ⊢ [p] : □sA ▷ Γ
PBox

(C : ∀α : κ.B ′
1
q1 → ... → B ′

n
qn → K A′) ∈ D

Σ ⊢ B1
q1 → ...→ Bn

qn → K A = inst(∀α : κ.B ′
1
q1 → ...→ B ′

n
qn → K A′)

Σ; qi · r ⊢ pi : Bi ▷ Γi |K A| > 1 ⇒ 1 ⊑ r

Σ; r ⊢ C p1 ... pn : K A ▷ Γi

PCon

Fig. 2: Pattern typing rules

Recursion is typed via the µ1 rule and its inverse µ2, in a standard way.
Introduction of data types (Con) via a constructor C of a data type K A

(with zero or more type parameters) incurs an instantiation of its polymorphic
type scheme fromD. Each argument has a grade qi. Constructors are closed, thus
have only zero-use grades in the context by scaling with 0. Elimination of data
types (Case) is via pattern matching. Patterns p are typed by the judgement
r ⊢ p : A ▷ ∆ (Figure 2) stating that pattern p has type A and produces a
context of typed binders ∆. The grade r to the left of the turnstile represents
grade information arising from usage in the context generated by this pattern.

Variable patterns (PVar) produce a singleton context with x :r A of the
grade r . Pattern matches on data constructors (PCon rule) may have zero
or more sub-patterns (p1...pn), each of which is typed under the grade qi · r
(where qi is the grade of corresponding argument type for the constructor, as
defined in D). Additionally, we have the constraint |K A| > 1 ⇒ 1 ⊑ r which
witnesses the fact that if there is more than one data constructor for the data
type (written |K A| > 1), then r must approximate 1 because pattern matching
on a data constructor incurs some usage since it reveals information about that
constructor. 2 By contrast, pattern matching on a type with only one constructor
cannot convey any information by itself and so no usage requirement is imposed.
Finally, elimination of a graded modality (often called unboxing) takes place via
the PBox rule, with syntax [p]. Like PCon, this rule propagates the grade
information of the box pattern’s type s to the enclosed sub-pattern p, yielding a
context with the grades r · s. One may observe that PBox (and by extension Pr)
could be considered as special cases of PCon (and Con respectively), if we were
to treat promotion as a data constructor with the type Ar → □rA. We however
chose to keep modal introduction and elimination distinct from constructors.

Example 2. Discussed early, the natural numbers semiring with discrete ordering
(N, ∗, 1,+, 0,≡) counts exactly how many times variables are used. We denote
this semiring as N≡. This semiring is less useful in the presence of control-flow,
e.g., for multiple branches in a case using variables differently. A semiring of
natural number intervals [45] is more helpful here. An interval is a pair of natural
numbers N× N written r ...s for lower bound r ∈ N and upper bound by s ∈ N.
Addition is defined pointwise with zero 0 = 0...0 and multiplication defined as in

2 A discussion of this additional constraint on grades is given by Hughes et al. [29]
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interval arithmetic with 1 = 1...1 and ordering r ...s ⊑ r ′...s ′ = r ′ ≤ r ∧ s ≤ s ′.
This semiring allows us to write a function which performs an elimination on a
coproduct (assuming inl : A1 → A⊕B, and inr : B1 → A⊕B in D):

⊕elim : (A1 → C)0...1 → (B1 → C)0...1 → (A⊕B)1 → C
⊕elim = λf.λg.λx.case x of inl y 7→ f y; inr z 7→ g z

Example 3. The ! modality of linear logic can be (almost) recovered via the
{0,1,ω} semiring where 0 ⊑ ω and 1 ⊑ ω. Addition is r+s = r if s = 0, r+s = s
if r = 0, otherwise ω. Multiplication is r · 0 = 0 · r = 0, r · ω = ω · r = ω (where
r ̸= 0), and r · 1 = 1 · r = r. This semiring expresses linear and non-linear usage,
where 1 indicates linear use, 0 requires the value be discarded, and ω acts as
linear logic’s ! permitting arbitrary use. This is similar to Haskell’s multiplicity
annotations, although they have no equivalent of a 0 grade, with only One and
Many grades [8]. Some additional restrictions are required on pattern typing to
get exactly the behaviour of ! with respect to products [26], not considered here.

Lastly we note that the calculus enjoys admissibility of substitution [1] which
is critical in type preservation proofs, and is needed for soundness of synthesis:

Lemma 1 (Admissibility of substitution). Let ∆ ⊢ t ′ : A, then: If Γ, x :r
A, Γ ′ ⊢ t : B then Γ + (r ·∆) + Γ ′ ⊢ [t ′/x ]t : B

4 Synthesis Calculus

Having defined the target language, we define our synthesis calculus, which uses
the additive approach to resource management (see Section 2), with judgments:

Σ;Γ ⊢ A ⇒ t | ∆

That is, given an input context Γ , for goal type A we can synthesise the term
t with output context ∆ describing how variables were used in t . As in typing,
top-level definitions and data constructors in scope are provided by a set D
parameterising the system. Σ is a context of type variables, which we elide when
it is simply passed inductively to the premise(s). The context ∆ need not use the
variables in Γ with the same grades. Instead, the relationship between synthesis
and typing is given by the central soundness result, which we state up-front: that
synthesised terms are typed by their goal type under their output context:

Theorem 1 (Soundness). For all pre-ordered semirings R:

1. For all contexts Γ and ∆, types A, terms t:

Σ;Γ ⊢ A ⇒ t | ∆ =⇒ Σ;∆ ⊢ t : A

2. At the top-level, for all type schemes ∀α : κ.A and terms t then:

∅; ∅ ⊢ ∀α : κ.A ⇒ t | ∅ =⇒ ∅; ∅ ⊢ t : ∀α : κ.A
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Appendix D of the additional material provides the soundness proof [28],
which in part resembles a translation from sequent calculus to natural deduction,
but also with the management of grades between synthesis and type checking.

The first part of soundness on its own does not guarantee that a synthesised
program t is well resourced, i.e., the grades in ∆ may not be approximated by
grades in Γ . For example, for semiring N≡ a valid judgement is:

x :2 A ⊢ A ⇒ x | x :1 A

i.e., for goal A, if x has type A in the context then we synthesis x as the re-
sulting program, regardless of the grades. Such a synthesis judgement may be
part of a larger derivation in which the grades eventually match due to a further
subderivation, e.g., using x again and thus total usage for x is eventually 2 as
prescribed by the input context. However, at the level of an individual judgement
we do not guarantee that the synthesised term is well-resourced with respect to
the input context. A reasonable pruning condition to assess whether any syn-
thesis judgement is potentially well-resourced is ∃∆′.(∆ + ∆′) ⊑ Γ , i.e., there
is some additional usage ∆′ (that might come from further on in the synthesis
process) that ‘fills the gap’ in resource use to produce ∆ +∆′ which is overap-
proximated by Γ . In this example, ∆′ = x :1 A would satisfy this constraint,
explaining that there is some further possible single usage which will satisfy the
incoming grade. However, our previous work on graded linear types showed that
excessive pruning at every step becomes too costly in a general setting [27]. In-
stead, we apply such pruning more judiciously, only requiring that variable use is
well-resourced at the point of synthesising binders. Therefore synthesised closed
terms are always well-resourced (second part of the soundness theorem).

We next present the synthesis calculus in stages. Each type former of the core
calculus (with the exception of type variables) has two corresponding synthesis
rules: a right rule for introduction (labelled R) and a left rule for elimination
(labelled L). We frequently apply the algorithmic reading of the judgments,
where meta variables to the left of ⇒ are inputs (i.e., context Γ and goal type A)
and terms to the right of⇒ are outputs (i.e., the synthesised term t and the usage
context ∆). Whilst we largely present the approach here in abstract terms, via
the synthesis judgments, we highlight some choices made in our implementation
(e.g., heuristics applied in the algorithmic version of the rules).

4.1 Core Synthesis Rules

Top-level We begin with synthesis from a type scheme goal (which is technically
a separate judgment form), providing the entry-point to synthesis:

α : κ; ∅ ⊢ A ⇒ t | ∅
∅; ∅ ⊢ ∀α : κ.A ⇒ t | ∅

TopLevel

The universally-quantified type variables α : κ are thus added to the type vari-
able context of the premise (note, type variables are only equal to themselves).
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Variables For any goal type A, if there is a variable in the context matching this
type then it can be synthesised for the goal, given by a terminal rule:

Σ ⊢ A : Ty

Σ;Γ, x :r A ⊢ A ⇒ x | 0 ·Γ, x :1 A
Var

Said another way, to synthesise the use of a variable x , we require that x be
present in the input context Γ . The output context here then explains that only
variable x is used: it consists of the entirety of the input context Γ scaled by grade
0 (using definition 1), extended with x :1 A, i.e. a single usage of x as denoted by
the 1 element of the semiring. Maintaining this zeroed Γ in the output context
simplifies subsequent rules by avoiding excessive context membership checks.

The Var rule permits synthesis of terms which may not be well-resourced,
e.g., if r = 0, the rule still synthesises a use of x. As discussed at this section’s
start, this may be locally ill-resourced, but is acceptable at the global level as we
check that an assumption has been used correctly when it is bound. This reduces
the number of intermediate theorems that need solving (previously shown to be
expensive [27], especially since the variable rule is applied very frequently), but
increases the number of paths that are ill-resourced so must be pruned later.

The use of a top-level polymorphic function is synthesised if it can be instan-
tiated to match the goal type:

(x : ∀α : κ.A′) ∈ D Σ ⊢ A = inst(∀α : κ.A′)

Σ;Γ ⊢ A ⇒ x | 0 ·Γ
Def

For example, assuming flip : ∀c : Type, d : Type.(c ⊗ d)1 → (d ⊗ c) ∈ D then
flip is synthesised for a goal type of (K1 ⊗ K2)

1 → (K2 ⊗ K1) for some type
constants K1 and K2, via the instantiation ∅ ⊢ (K1 ⊗ K2)

1 → (K2 ⊗ K1) =
inst(∀c : Type, d : Type.(c⊗ d)1 → (d⊗ c)).

Recursion is provided by populating D with the name and type of the defini-
tion currently being synthesised for (see Section 4.2 for implementation details).

Functions Synthesis from function types is handled by the →Rrule:

Γ, x :q A ⊢ B ⇒ t | ∆, x :r A r ⊑ q

Γ ⊢ Aq → B ⇒ λx .t | ∆
→R

Reading bottom up, to synthesise a term of type Aq → B in context Γ we first
extend the context with a fresh variable assumption x :q A and synthesise a
term of type B that will ultimately become the body of the function. The type
Aq → B conveys that A must be used according to q in our term for B . The
fresh variable x is passed to the premise of the rule using the grade of the binder:
q . The x must then be used to synthesise a term t with q usage. In the premise,
after synthesising t we obtain an output context ∆, x :r A. As mentioned, the
Var rule ensures that x is present in this context, even if it was not used in the
synthesis of t (e.g., r = 0). The rule ensures the usage of bound term (r) in t
does not violate the input grade q via the requirement that r ⊑ q i.e. that r is
approximated by q . If met,∆ becomes the output context of the rule’s conclusion.
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Function application is synthesised from functions in the context (a left rule):

Γ, x :r1 Aq → B , y :r1 B ⊢ C ⇒ t1 | ∆1, x :s1 Aq → B , y :s2 B
Γ, x :r1 Aq → B ⊢ A ⇒ t2 | ∆2, x :s3 Aq → B

Γ, x :r1 Aq → B ⊢ C ⇒ [(x t2)/y ]t1 | (∆1 + s2 · q ·∆2), x :s2+s1+(s2 · q · s3) A
q → B

→L

Reading bottom up, the input context contains an assumption of function type
x :r1 Aq → B . An application of x can be synthesised if an argument t2 can be
synthesised for the input type A (second premise). The goal type C is synthesised
(first premise), under the assumption of a result of type B bound to y . In the
conclusion, a term is synthesised which substitutes in t1 the result placeholder
variable y for the application x t2.

We explain the concluding output context in two stages. Firstly, the output
context∆1 of the first premise is added to a scaled ∆2. Since∆2 are the resources
used by the synthesised argument t2, this context is scaled by q as t2 is used
according to q by x as per its type. This context is further scaled by s2 which is
the usage of the entire application x t2 inside t1 as given by the output grade for
y in the first premise. Secondly, the output context calculates the use of x used
in the application itself and potentially also by both premises (which differs from
lgm’s treatment of synthesis in a linear setting). Apart from application, x may
be used also to synthesise the argument t2, calculated as grade s3 in the second
premise. Thus, the application accrues q · s3 use. Furthermore as the result y is
used according to s2, we must further scale by s2, obtaining s2 · q · s3. To this
we must also add the additional usage of x in the first premise s1 as well as the
use of x in actually performing application, which is 1 scaled by s2 to account
for the usage of its result, thus obtaining the output grade for x. Following the
soundness proof for this rule (Appendix D) can be instructive.

The declarative rule above does not imply an ordering of whether t1 or t2 is
synthesised first. As a heuristic, the implementation first attempts to synthesise
t1 assuming y :r1 B according to the first premise to avoid possibly unnecessary
work if no term can be synthesised anyway for C .

Example 4. Let T = (A ⊗ A)0..1 → A type an assumption fst in a use of →L:

z :s A, fst :r T, y :r A ⊢ A ⊗ A ⇒ (y , y) | z :0 A, fst :0 T, y :2 A
z :s A, fst :r T ⊢ A ⇒ (z , z ) | z :2 A, fst :0 T

z :s A, fst :r T ⊢ A ⊗ A ⇒ (fst (z , z ), fst (z , z )) | z :0+2 · (0..1) · 2 A, fst :2+0+(2 · (0..1) · 0) T

In this instantiation of the (→L) rule, q = 0..1 and s1 = s3 = 0, i.e., the function
fst is not used in the subterms, and s2 = 2, i.e., the result y of fst is used twice.
In the conclusion then, z then has output grade 0 + 2 · (0..1) · 2 = 0..4, i.e., it is
used up to four times and fst has grade 2..2, i.e., it is used twice.

Graded Modalities Graded modalities are introduced through the □Rrule, syn-
thesising a promotion [t] for some graded modal type □rA:

Γ ⊢ A ⇒ t | ∆
Γ ⊢ □rA ⇒ [t ] | r ·∆

□R
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The premise synthesises term t from A with output context ∆. In the conclusion,
∆ is scaled by the grade r of the goal type since [t ] must use t as r requires.

Grade elimination (unboxing) takes place via pattern matching in case:

Γ, y :r · q A, x :r □qA ⊢ B ⇒ t | ∆, y :s1 A, x :s2 □qA
∃s3. s1 ⊑ s3 · q ⊑ r · q

Γ, x :r □qA ⊢ B ⇒ case x of [y ] → t | ∆, x :s3+s2 □qA
□L

To eliminate an assumption x of graded modal type □qA, we bind a fresh as-
sumption the premise: y :r · q A. This assumption is graded with r · q : the grade
from the assumption’s type multiplied by the grade of the assumption itself. As
with previous elimination rules, x is rebound in the rule’s premise. A term t is
then synthesised resulting in the output context ∆, y :s1 A, x :s2 □qA, where s1
and s2 describe how y and x were used in t . The second premise ensures that
the usage of y is well-resourced. The grade s3 represents how much the usage of
y inside t contributes to the overall usage of x . The constraint s1 ⊑ s3 · q con-
veys the fact that q uses of y constitutes a single use of x , with the constraint
s3 · q ⊑ r · q ensuring that the overall usage does not exceed the binding grade.
For the output context of the conclusion, we simply remove the bound y from
∆ and add x , with the grade s2 + s3 representing the total usage of x in t .

Data Types The synthesis of introduction forms for data types is by the CRrule:

(C : ∀α : κ.B ′
1
q1 → ... → B ′

n
qn → K A′) ∈ D

Σ ⊢ B1
q1 → ...→ Bn

qn → K A = inst(∀α : κ.B ′
1
q1 → ...→ B ′

n
qn → K A′)

Σ;Γ ⊢ Bi ⇒ ti | ∆i

Σ;Γ ⊢ K A ⇒ C t1 ... tn | 0 ·Γ + (q1 ·∆1) + ... + (qn ·∆n)
CR

where D is the set of data constructors in global scope, e.g., coming from ADT
definitions, including here products, unit, and coproducts with (, ) : A1 → B1 →
A⊗B, unit : Unit, inl : A1 → A⊕B, and inr : B1 → A⊕B.

For a goal type K A where K is a data type with zero or more type argu-
ments (denoted by the vector A), then a constructor term C t1 .. tn for K A is
synthesised. The type scheme of the constructor in D is first instantiated (similar
to Def rule), yielding a type B1

q1 → ...→ Bn
qn → K A. A sub-term is then syn-

thesised for each of the constructor’s arguments ti in the third premise (which is
repeated for each instantiated argument type Bi), yielding output contexts ∆i .
The output context for the rule’s conclusion is obtained by performing a context
addition across all the output contexts generated from the premises, where each
context ∆i is scaled by the corresponding grade qi from the data constructor in
D capturing the fact that each argument ti is used according to qi .

Data type elimination synthesises case expressions, pattern matching on each
data constructor of the goal data type K A, with various constraints on grades.
In the rule, we use the least-upper bound (lub) operator ⊔ on grades, which is
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defined wrt. ⊑ and may not always be defined:

(Ci : ∀α : κ.B ′
1
q1 → ... → B ′

n
qn → K A′) ∈ D Σ ⊢ K A : Ty

Σ ⊢ B1
q1 → ...→ Bn

qn → K A = inst(∀α : κ.B ′
1
q1 → ...→ B ′

n
qn → K A′)

Σ;Γ, x :r K A, y i
1 :r · qi

1
B1, ..., y

i
n :r · qi

1
Bn ⊢ B ⇒ ti | ∆i , x :ri K A, y i

1 :si1 B1, ..., y
i
n :sin Bn

∃s ′ij . sij ⊑ s ′
i
j · q ij ⊑ r · q ij si = s ′

i
1 ⊔ ... ⊔ s ′

i
n |K A| > 1 ⇒ 1 ⊑ s1 ⊔ ... ⊔ sm

Σ;Γ, x :r K A ⊢ B ⇒ case x of Ci y i
1...y

i
n 7→ ti | (∆1 ⊔ ... ⊔∆m), x :⊔ ri+

⊔
si K A

CL

where 1 ≤ i ≤ m indexes data constructors of which there are m (i.e.,m = |K A|)
and 1 ≤ j ≤ n indexes arguments of the ith data constructor, thus n depends
on i. The rule considers data constructors where n > 0 for brevity.

The relevant data constructors Ci are retrieved from the global scopeD in the
first premise. Each polymorphic type scheme is instantiated to a monomorphic
type. The monomorphised type for each i is a function from constructor argu-
ments B1 . . .Bn to the applied type constructor K A. For each Ci, we synthesise
a term ti from this result type K A, binding the data constructor’s argument
types as fresh assumptions to be used in the synthesis of ti . The grades of each
argument are scaled by r . This follows the pattern typing rule for constructors;
a pattern match under some grade r must bind assumptions that have the ca-
pability to be used according to r . The assumption being eliminated x :r K A is
also included in the premise’s context (as in →L) as we may perform additional
eliminations on the current assumption subsequently.

The output context for each branch can be broken down into three parts:

1. ∆i contains any assumptions from Γ were used to construct ti ;

2. x :ri K A describes how the assumption x was used;

3. y i
1 :si1 B1, ..., y

i
n :sin Bn describes how each assumption y i

j bound in the pat-

tern match was used in ti according to grade sij .

For the concluding output context, we take the least-upper bound of the shared
output contexts ∆i of the branches. This is extended with the grade for x which
requires some calculation. For each bound assumption, we generate a fresh grade
variable s ′

i
j which represents how that variable was used in ti after factoring out

the multiplication by q ij . This is done via the constraint in the third premise

that ∃s ′ij . sij ⊑ s ′
i
j · q ij ⊑ r · q ij . The lub of s ′

i
j for all j is then taken to form a

grade variable si which represents the total usage of x for branch i arising from
the use of assumptions bound via the pattern match (i.e., not usage that arises
from reusing x explicitly inside ti). The final grade for x is then the lub of each
ri (the usages of x directly in each branch) plus the lub of each si (the usages
of the assumptions that were bound from matching on a constructor of x ).

Example 5 (case synthesis). Consider two possible synthesis results:

x :r A ⊕ Unit, y :s A, z :r · q1 A ⊢ A ⇒ z | x :0 A ⊕ Unit, y :0 A, z :1 A (1)

x :r A ⊕ Unit, y :s A ⊢ A ⇒ y | x :0 A ⊕ Unit, y :1 A (2)
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We will plug these into the rule for generating case as follows, where Σ has been
elided and instead of using the above concrete grades we have used the abstract
form of the rule (the two will be linked by equations after):

some : (∀α, β : Ty.α1 → α ⊕ β) ∈ D Σ ⊢ A1 → A ⊕ Unit = inst(∀α, β : Ty.α1 → α ⊕ β)
none : (∀α, β : Ty.α ⊕ β) ∈ D Σ ⊢ A ⊕ Unit = inst(∀α, β : Ty.α ⊕ β)
(1) Σ; x :r A ⊕ Unit, y :s A, z :r · q1 A ⊢ A ⇒ z | x :0 A ⊕ Unit, y :0 A, z :s1 A
(2) Σ; x :r A ⊕ Unit, y :s A ⊢ A ⇒ y | x :0 A ⊕ Unit, y :1 A

∃s ′1. s1 ⊑ s ′1 · q1 ⊑ r · q1 s ′ = s ′1 |A ⊕ Unit| =⇒ 1⊑ s1

x :r A ⊕ Unit, y :s A ⊢ A ⇒ (case x of some z → z ; none → y) | x :(0⊔0)+s′ A ⊕ Unit, y :0⊔1 A

To unify (1) and (2) with the CL rule format s1 = 1 and q1 = 1 (from the type
of inl). Applying these equalities to the existential constraint we have

∃s ′1. 1 ⊑ (s ′1 · 1) ⊑ (r · 1) =⇒ ∃s ′1. 1 ⊑ s ′1 ⊑ r

With the natural-number intervals semiring this is satisfied by s ′1 = 1..1 = s ′

and thus in the output context x has grade 1..1 and y has grade 0..1.

Recursive Types Though µ types are equi-recursive, we define explicit synthesis
rules to facilitate the implementation (Section 4.2) where depth information
needs to be tracked when employing the following µL and µR rules:

Γ ⊢ A[µX.A/X] ⇒ t | ∆

Γ ⊢ µX.A ⇒ t | ∆
µR

Γ, x :r A[µX.A/X] ⊢ B ⇒ t | ∆

Γ, x :r µX.A ⊢ B ⇒ t | ∆
µL

To synthesise a recursive data structure of type µX.A, we must be able to synthe-
sise A with µX.A substituted for the recursion variable X in A. For example, if
we wish to synthesise a list typed List a (where Cons : a → List a → List a)
then when synthesising a Cons constructor in the µR rule, we must re-apply the
µR rule to synthesise the recursive argument. Elimination of a value µX.A in the
context is via the µL, which expands the recursive type in the synthesis context.

4.2 Algorithmic Implementation

The calculus presented above serves as a starting point for our implemented syn-
thesis algorithm in Granule. However, the rules are highly non-deterministic with
regards their order in which they may be applied. For example, after applying a
(→R )-rule, we may choose to apply any of the elimination rules before applying
an introduction rule for the goal type. This leads to us exploring a large number
of redundant search branches which can be avoided through the application of a
technique known as focusing [4]. Focusing is a tool from linear logic proof theory
based on the idea that some rules are invertible, i.e., whenever the conclusion of
the rule is derivable, then so are the premises. In other words, the order in which
we apply invertible rules doesn’t matter. By fixing a particular ordering on the
application of invertible rules, we eliminate much of the non-determinism that
arises from trying branches which differ only in the order in which invertible rules
are applied. The full focusing versions of the rules from our calculus, and their
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proof of soundness, can be found in Appendix E [28]. This forms the basis of our
implementation with the high-level algorithm given in appendix Figure 5 as a
(non-deterministic) finite state machine, which shows the ordering given to the
rules under the focussing approach, starting with trying to synthesise function
types before switching to eliminations rules, and so on. In standard terminology,
our algorithm is ‘top-down’ (see, e.g., [17, 47, 23, 53]), or goal-directed, in which
we start with a type goal and an input context and progress by gradually build-
ing the syntax tree from the empty term following the focussing-ordered rules
of our calculus. This contrasts with ‘bottom-up’ approaches [2, 41, 44] which
maintain complete programs which can be executed (tested) and combined.

Where transitions are non-deterministic in the algorithm, multiple branches
are then explored in synthesis. Our implementation relies on the use of back-
tracking proof search, leveraging a monadic interface that provides both choice
(e.g., between multiple possible synthesis options based on the goal type) and
failure (e.g., when a constraint fails to hold) [33]. For every rule that generates a
constraint on grades, due to binding (□L, →R, CL), we compile the constraints
to the SMT-lib format [7] which are then discharged by the Z3 SMT solver [43].
If the constraint is invalid then we trigger the failure of this synthesis pathway,
triggering backtracking via the “logic” monad [33]. A synthesised program can
also be rejected by user (or due to a failing an example, see below) and synthesis
then produces an alternate result (what we call a retry) via backtracking.

Recursive data structures present a challenge in the implementation. For
example, for the list data type, how do we prevent synthesis from applying
the µL rule, followed by the CL rule on the Cons constructor ad infinitum? We
resolve this issue using an iterative deepening approach similar to that used by
Myth [48]. Programs are synthesised with elimination (and introduction) forms
of constructors restricted up to a given depth. If no program is synthesised within
these bounds, then the depth limits are incremented. The current depth and the
depth limit are part of the state of the synthesiser. Combined with focusing
this provides the basis an efficient implementation of the synthesis calculus.
Furthermore, to ensure that a synthesised programs terminates, we only permit
synthesis of recursive function calls which are structurally recursive, i.e., those
which apply the recursive definition to a subterm of the function’s inputs [48].

Lastly, after synthesis, a post-synthesis refactoring step runs to simplify
terms and produce a more idiomatic style. For example for the k combinator
type signature k : ∀ {a b : Type} . a %1 → b %0 → a we synthesis the term:
k = λx → λy → x. Our refactoring procedure collects the outermost abstrac-
tions of a synthesised term and transforms them into equation-level patterns with
the innermost abstraction body forming the equation body: k x y = x. Repeated
case expressions are also refactored into nested pattern matches, which are part
of Granule. For example, nested matching on pairs is simplified to a single case
with nested pattern matching: case x of (y1, y2) → case y1 of (z1, z2) → e

is refactored to case x of ((z1, z2), y2) → e.

Input-output Examples Further to the implementation described above, we also
allow user-defined input-output examples which are checked as part of synthesis.
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Our approach is deliberately näıve: we evaluate a fully synthesised candidate
program against the inputs and check that the results match the corresponding
outputs. Unlike sophisticated example-driven synthesis tools, the examples only
influence the search procedure by backtracking on a complete program that
doesn’t satisfy the examples. This lets us consider the effectiveness of search
based primarily around the use of grades (see Section 5). Integrating examples
more tightly with the type-and-grade directed approach is further work.

Our implementation augments Granule with first-class syntax for specifying
input-output examples, both as a feature for aiding synthesis but also for aiding
documentation that is type checked (and therefore more likely to stay consistent
with a code base as it evolves). Synthesis specifications are written in Granule
directly above a program hole (written using ?) using the spec keyword. The
input-output examples are then listed per-line. For example, one of benchmark
programs (Section 5) for the length of a list is specified as:

1 length : ∀ a . List a %0..∞ → N

2 spec length (Cons 1 (Cons 1 Nil)) = S (S Z);

3 length

4 length = ?

Any synthesised definition must then behave according to this example.
In a spec block, a user can also specify the names of functions in scope which

are to be taken as the available definitions (set D in the formal specification). For
example, line 4 above specifies that length can be used here (i.e., recursively).

5 Evaluation

In evaluating our approach and tool, we made the following hypotheses:

H1. (Expressivity; less consultation) The use of grades in synthesis results
in a synthesised program that is more likely to have the behaviour desired
by the user; the user needs to request fewer alternate synthesised results
(retries) and thus is consulted less in order to arrive at the desired program.

H2. (Expressivity; fewer examples) Grade-and-type directed synthesis re-
quires fewer input-output examples to arrive at the desired program compare
with a purely type-driven approach.

H3. (Performance; more pruning) The ability to prune resource-violating
candidate programs from the search tree leads to a synthesised program
being found more quickly when synthesised from a graded type compared
with the same type but without grades (purely type-driven approach).

5.1 Methodology

To evaluate our approach, we collected a suite of benchmarks comprising graded
type signatures for common transformations on structures such as lists, streams,
booleans, option (‘maybe’) types, unary natural numbers, and binary trees. A
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representative sample of benchmarks from the Myth synthesis tool [47] are in-
cluded alongside a variety of other programs one might write in a graded setting.
Benchmarks are categorised based on the main data type, with an additional mis-
cellaneous category. Appendix C lists type schemes for all benchmarks [28]. To
compare, in various ways, our grade-and-type-directed synthesis to traditional
type-directed synthesis, each benchmark signature is also “de-graded” by replac-
ing all grades in the type with Any which is the only element of the singleton
Cartesian semiring in Granule. When synthesising in this semiring, we can forgo
discharging grade constraints in the SMT solver entirely. Thus, synthesis for
Cartesian grades degenerates to type-directed synthesis following our rules.

To assess hypothesis 1 (grade-and-type directed leads to less consultation
/ more likely to synthesise the intended program) we perform grade-and-type
directed synthesis on each benchmark problem and type-directed synthesis on
the corresponding de-graded version. For the de-graded versions, we record the
number of retries N needed to arrive at a well-resourced answer by type checking
the output programs against the original graded type signature, retrying if the
program is not well-typed (essentially, not well-resourced). This checks whether
a program is ‘as intended’ without requiring input from a user. In each case, we
also compared whether the resulting programs from synthesis via graded-and-
type directed vs. type-directed with retries (on non-we were equivalent.

To assess hypothesis 2 (graded-and-type directed requires fewer examples
than type-directed), we run the de-graded (Cartesian) synthesis with the smallest
set of examples which leads to the model program being synthesised (without
any retries). To compare across approaches to the state-of-the-art type-directed
approach, we also run a separate set of experiments comparing the minimal
number of examples required to synthesise in Granule (with grades) vs. Myth.

To assess hypothesis 3 (grade-and-type-directed faster than type-directed) we
compare performance in the graded setting to the de-graded Cartesian setting.
Comparing our tool for speed against another type-directed (but not graded-
directed) synthesis tool such as Myth is likely to be largely uninformative due
to differences in implementation (engineering artefacts) obscuring meaningful
comparison. Thus, we instead compare timings for the graded and de-graded
approach within Granule. This normalises implementation artefacts as the two
approaches vary only in the use of SMT solving to prune ill-resourced programs
(in the graded approach). We also record the number of search paths taken (over
all retries) to assess the level of pruning in the graded vs de-graded case.

We ran our synthesis tool on each benchmark for both the graded type and
the de-graded Cartesian case, computing the mean after 10 trials for timing data.
Benchmarking was carried out using version 4.12.1 of Z3 [43] on an M1 MacBook
Air with 16 GB of RAM. A timeout limit of 10 seconds was set for synthesis.

5.2 Results and Analysis

Table 1 records the results comparing grade-and-type synthesis vs. the Cartesian
(de-graded) type-directed synthesis. The left column gives the benchmark name,
number of top-level definitions in scope that can be used as components (size
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of the synthesis context) labelled Ctxt, and the minimum number of examples
needed (#/Exs) to synthesise the Graded and Cartesian programs. In the Carte-
sian setting, where grade information is not available, if we forgo type-checking
a candidate program against the original graded type then additional input-
output examples are required to provide a strong enough specification such that
the correct program is synthesised (see H3). The number of additional examples
is given in parentheses for those benchmarks which required these additional
examples to synthesise a program in the Cartesian setting.

Each subsequent results column records: whether a program was synthesised
successfully✓ or not × (due to timeout or no solution found), the mean synthesis
time (µT ) or if timeout occurred, and the number branching paths (Paths)
explored in the synthesis search space.

The first results column (Graded) contains the results for graded synthesis.
The second results column (Cartesian + Graded type-check) contains the results
for synthesising in the Cartesian (de-graded) setting, using the same examples set
as the Graded column, and recording the number of retries (consultations of the
type-checker at the end) N needed to reach a well-resourced program. In all cases,
the resulting program in the Cartesian case was equivalent to that generated by
the graded synthesis, none of which needed any retries (i.e., implicitly N = 0 for
graded synthesis, i.e., no retries are needed). H1 is confirmed by the fact that N
is greater than 0 in 29 out of 46 benchmarks (60%), i.e., the Cartesian case does
not synthesis the correct program first time and needs multiple retries to reach
a well-resource program, with a mean of 19.60 retries and a median of 4 retries.

For each row, we highlight the column which synthesised a result the fastest in
blue. In 17 of the 46 benchmarks (37%) the graded approach out-performed non-
graded synthesis. This contradicts hypothesis 3 somewhat: whilst type-directed
synthesis often requires multiple retries (versus no retries for graded) it still out-
performs graded synthesis. This is due to the cost of SMT solving which must
compile a first-order theorem on grades into the SMT-lib file format, start Z3,
and then run the solver. Considerable amounts of system overhead are incurred
in this procedure. A more efficient implementation calling Z3 directly (via a dy-
namic library call) may give more favourable results here. However, H3 is still
somewhat supported: the cases in which the graded does outperform the Carte-
sian are those which involve considerable complexity in their use of grades, such
as stutter, inc, and bind for lists, and sum for both lists and trees. In each case,
the Cartesian column is significantly slower, even timing out for stutter; this
shows the power of the graded approach. Furthermore, we highlight the column
with the smallest number of synthesis paths explored in yellow, observing that
the number of paths in the graded case is always the same or less than that those
in the Cartesian+graded type check case (apart from Tree stutter). The paths
explored are the sometimes the same between Graded and Cartesian synthesis
because we use backtracking search even in the Cartesian case where, if an out-
put program fails to type check against the graded type, the search backtracks
rather than starting from the beginning. This leads to an equal number of paths
in the graded case when solving occurred only at a top-level abstraction. How-
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ever, paths explored are fewer in the graded case when solving occurs at other
binders, e.g., in case and unboxing.

Confirming H2, the de-graded setting without graded type checking requires
more examples to synthesise the same program as the graded in 20 out of 46
(43%) cases. In these cases, an average of 1.25 additional examples are required.
To further interrogate H2, we compare the number of examples required by

Graded Cartesian + Graded type-check

Problem Ctxt #/Exs. µT (ms) Paths µT (ms) N Paths

L
is
t

append 0 0 (+1) ✓ 115.35 (5.13) 130 ✓ 105.24 (0.36) 8 130
concat 1 0 (+3) ✓ 1104.76 (1.60) 1354 ✓ 615.29 (1.43) 12 1354
empty 0 0 ✓ 5.31 (0.02) 17 ✓ 1.20 (0.01) 0 17
snoc 1 1 ✓ 2137.28 (2.14) 2204 ✓ 1094.03 (4.75) 8 2278
drop 1 1 ✓ 1185.03 (2.53) 1634 ✓ 445.95 (1.71) 8 1907
flatten 2 1 ✓ 1369.90 (2.60) 482 ✓ 527.64 (1.04) 8 482
bind 2 0 (+2) ✓ 62.20 (0.21) 129 ✓ 622.84 (0.95) 18 427
return 0 0 (+1) ✓ 19.71 (0.18) 49 ✓ 22.00 (0.08) 4 49
inc 1 1 ✓ 708.23 (0.69) 879 ✓ 2835.53 (7.69) 24 1664
head 0 1 ✓ 68.23 (0.53) 34 ✓ 20.78 (0.10) 4 34
tail 0 1 ✓ 84.23 (0.20) 33 ✓ 38.59 (0.06) 8 33
last 1 1 (+1) ✓ 1298.52 (1.17) 593 ✓ 410.60 (6.25) 4 684

length 1 1 ✓ 464.12 (0.90) 251 ✓ 127.91 (0.58) 4 251
map 1 0 (+1) ✓ 550.10 (0.61) 3075 ✓ 249.42 (0.73) 4 3075

replicate5 0 0 (+1) ✓ 372.23 (0.70) 1295 ✓ 435.78 (1.06) 4 1295
replicate10 0 0 (+1) ✓ 2241.87 (4.74) 10773 ✓ 2898.93 (1.47) 4 10773
replicateN 1 1 ✓ 593.86 (1.68) 772 ✓ 108.98 (0.65) 4 772
stutter 1 0 ✓ 1325.36 (1.77) 1792 × Timeout - -
sum 2 1 (+1) ✓ 84.09 (0.25) 208 ✓ 3236.74 (0.87) 192 3623

S
tr
e
a
m

build 0 0 (+1) ✓ 61.27 (0.45) 75 ✓ 84.44 (0.49) 4 75
map 1 0 (+1) ✓ 351.93 (0.91) 1363 ✓ 153.01 (0.37) 0 1363
take1 0 0 (+1) ✓ 34.02 (0.23) 22 ✓ 19.32 (0.05) 0 22
take2 0 0 (+1) ✓ 110.18 (0.31) 204 ✓ 89.10 (0.18) 0 208
take3 0 0 (+1) ✓ 915.39 (1.42) 1139 ✓ 631.47 (1.14) 0 1172

B
o
o
l

neg 0 2 ✓ 209.09 (0.31) 42 ✓ 168.37 (0.56) 0 42
and 0 4 ✓ 3129.30 (2.82) 786 ✓ 7069.14 (15.91) 0 2153
impl 0 4 ✓ 1735.09 (4.31) 484 ✓ 3000.48 (4.65) 0 1214
or 0 4 ✓ 1213.86 (1.02) 374 ✓ 2867.74 (3.52) 0 1203
xor 0 4 ✓ 2865.79 (4.33) 736 ✓ 7251.38 (32.06) 0 2229

M
a
y
b
e

bind 0 0 (+1) ✓ 159.87 (0.52) 237 ✓ 55.33 (0.33) 0 237
fromMaybe 0 0 (+2) ✓ 54.27 (0.35) 18 ✓ 11.58 (0.10) 0 18

return 0 0 ✓ 9.89 (0.02) 17 ✓ 11.49 (0.04) 4 17
isJust 0 2 ✓ 69.33 (0.17) 48 ✓ 22.07 (0.09) 0 48

isNothing 0 2 ✓ 102.42 (0.32) 49 ✓ 31.89 (0.22) 0 49
map 0 0 (+1) ✓ 54.90 (0.22) 120 ✓ 22.01 (0.10) 0 120
mplus 0 1 ✓ 319.64 (0.47) 318 ✓ 70.98 (0.05) 0 318

N
a
t

isEven 1 2 ✓ 1027.79 (1.28) 466 ✓ 313.77 (0.92) 8 468
pred 0 1 ✓ 46.20 (0.18) 33 ✓ 48.04 (0.13) 8 33
succ 0 1 ✓ 115.16 (0.91) 76 ✓ 156.02 (0.50) 8 76
sum 1 1 (+2) ✓ 1582.23 (3.60) 751 ✓ 734.38 (1.41) 12 751

T
re

e map 1 0 (+1) ✓ 1168.60 (1.21) 4259 ✓ 525.47 (1.31) 4 4259
stutter 1 0 (+1) ✓ 693.44 (1.21) 832 ✓ 219.91 (1.02) 4 674
sum 2 3 ✓ 1477.83 (1.28) 3230 ✓ 3532.24 (7.19) 192 3623

M
is
c compose 0 0 ✓ 40.27 (0.08) 38 ✓ 14.53 (0.09) 2 38

copy 0 0 ✓ 5.24 (0.04) 21 ✓ 6.16 (0.10) 2 21
push 0 0 ✓ 26.66 (0.18) 45 ✓ 14.23 (0.13) 2 45

Table 1: Results. µT in ms to 2 d.p. with standard sample error in brackets
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Granule Myth Smyth
Problem #/Exs #/Exs #/Exs

List

append 0 6 4
concat 1 6 3
snoc 1 8 3
drop 1 13 5
inc 1 4 2
head 1 3 2
tail 1 3 2
last 1 6 4

length 1 3 3
map 0 8 4

Granule Myth Smyth
Problem #/Exs #/Exs #/Exs

List
stutter 0 3 2
sum 1 3 2

Bool

neg 2 2 2
and 4 4 3
impl 4 4 3
or 4 4 3
xor 4 4 4

Nat
isEven 2 4 3
add 1 3 2
pred 1 3 2

Tree map 0 7 4

Table 2: Number of examples needed for synthesis, Granule vs. Myth vs. Smyth

Granule (using grades) against the Myth synthesis tool (based on pruning by
examples) [47], and the more advanced assertion-based Smyth [36]. We consider
the subset of our benchmarks drawn from Myth. Table 2 shows the minimum
number of input-output examples needed to synthesise the correct program in
Granule, Myth, and Smyth. For all cases, Granule required the same or fewer
examples than Myth to synthesis the desired program, requiring fewer examples
in 16 out of 21 cases. The disparity in the number of examples required is quite
significant in some cases: with 13 examples required by Myth to synthesise
concat but only 1 example for Granule. Overall, Smyth needed the same or
fewer examples than Myth. Granule needed the same or fewer examples than
Smyth in 18 out of 21 cases, but in the other 3 cases (and, impl, or) Smyth
required 1 fewer example. Overall, the lower number of examples needed in our
approach shows the pruning power of grades in synthesis, confirming H2.

We briefly examine one of the more complex benchmarks which uses almost
all of our synthesis rules in one program. The stutter case (List class) is specified:

1 stutter : ∀ a . List (a [2]) %1..∞ → List a

2 spec stutter

Its input is a list of elements graded by 2, i.e., must be used twice. The argument
list itself must be used at least once but possibly infinitely, suggesting that some
recursion will be necessary. This is further emphasised by the spec, which states
we can use stutter itself inside the function. Without grades, synthesis times
out. Graded synthesise produces the following in 1325ms (∼1.3 seconds):

1 stutter Nil = Nil;

2 stutter (Cons [u] z) = (Cons u) ((Cons u) (stutter z))

6 Synthesis of Linear Haskell Programs

As part of a growing trend of resourceful types being added to more mainstream
languages, Haskell has introduced support for linear types as of GHC 9, using an
underlying graded type system which can be enabled as a language extension [8]
(called LinearTypes). This system is closely related to the calculus here but
limited to one semiring. This however presents an opportunity to leverage our
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tool to synthesise (linear) Haskell programs. Like Granule, grades in Haskell can
be expressed as “multiplicities” on function types: a %r -> b. The multiplicity r
can be either 1 or ω (or polymorphic), with 1 denoting linear usage (also written
as ’One) and ω (’Many) for unrestricted use. Similarly, Granule can model linear
types using the 0-1-ω semiring (Example 1) [26]. Synthesising Linear Haskell
programs then simply becomes a task of parsing a Haskell type into a Granule
equivalent, synthesising a term from it, and compiling the synthesised term back
to Haskell (which has similar syntax to Granule anyway).

Our implementation includes a prototype synthesis tool using this approach.
A synthesis problem takes the form of a Linear Haskell program with a hole, e.g.

1 {-# LANGUAGE LinearTypes #-}

2 swap :: (a, b) %One -> (b, a)

3 swap = _

We invoke the synthesis tool with gr --linear-haskell swap.hs which produces:

1 swap (z, y) = (y, z)

Users may make use of lists, tuples, Maybe and Either data types from Haskell’s
prelude, as well as user-defined ADTs. Further integration of the tool, as well as
support for additional Haskell features such as GADTs is left as future work.

7 Discussion

Comparison with prior work Previously, lgm targeted the linear λ-calculus
with graded modalities [27]. In this paper, we instead considered a fully-graded
(‘graded base’) calculus with no linearity: all assumptions are graded and subse-
quently there is a graded function arrow (not present in the ‘linear base’ style).
This graded calculus matches practical implementations of graded types seen in
Idris 2 and Haskell. Furthermore, a key contribution beyond lgm is the handling
of recursion, general user-defined (recursive) ADTs, and polymorphism. Due to
the pervasive grading, the majority of the synthesis rules are considerably differ-
ent to lgm. For example, lgm’s synthesis of functions is linear, and thus need
not handle the complexity of grading (cf. →L on p. 13):

Γ, x2 : B ⊢ C ⇒+ t1;∆1, x2 : B Γ ⊢ A ⇒+ t2;∆2

Γ, x1 : A ⊸ B ⊢ C ⇒+ [(x1t2)/x2]t1; (∆1 +∆2), x1 : A ⊸ B
L ⊸+[27]

As above, in the linear setting of lgm, many of the constraints and grades
handled in this paper are essentially specialised away as equal to 1, with only
linear products and coproducts considered. Since grading is potentially more
permissive than linearity, elimination rules in our synthesis calculus must also
make available an eliminated variable for re-use in every premise, which was not
needed in lgm. Furthermore, the power of this paper’s case rule means there are
simple, non-recursive terms we can synthesise which lgm cannot. In particular,
synthesis of programs which perform “deep” pattern matching over a graded
data structure are not possible in lgm. For example, lgm’s approach cannot
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synthesise a term for □0..1(α, (α, β)) ⊸ β as it cannot propagate information
from one case to another to inherit the grade 0..1 on the pair’s components.
However, here we can synthesise (in just a few steps, plus refactoring):

1 deep : ∀ a b : Type . (a, (a, b)) %0..1 → b

2 deep [(_, (_, y))] = y -- y inherits grade 0..1

Thus, not only does our approach consider a different mode of grading, as well
as extending to arbitrary recursive ADTs and recursive functions, it is also more
expressive in the interaction between data types and grades.

lgm introduced additive and subtractive resource management schemes (sum-
marised and re-contextualised in Section 2). Comparative evaluation of lgm
showed that constraints from the subtractive approach are typically larger, more
complex, and discharged more frequently than in additive synthesis. We con-
cluded that subtractive only ever outperformed additive on purely linear types.
Coupled with the fact that the subtractive approach has limitations in the pres-
ence of polymorphic grades, we thus adopted the additive scheme, especially
in light of us considering more complex programs. Our evaluation of lgm did
not given any evidence justifying use of grades for synthesis compared to just
using types. Here, we showed that grading significantly reduces the number of
paths explored and examples needed when compared with purely type-directed
approaches, including in comparison with Myth [47].

Other Related Work Beyond Myth, other recent work has extended type-and-
example-directed synthesis approaches. Smyth constrains the search space fur-
ther by augmenting types with assertions (called ‘sketches’) to guide synthe-
sis [36]. This techniques involves employing more evaluation during synthesis to
generated intermediate input-output examples to prune the search space. They
evaluate on a subset of Myth benchmarks (somewhat similar to our own method
here). Whilst we compared our approach (with graded + types + examples con-
sidered at the end) to Myth (with types + examples integrated) to show that
grading reduces the number of examples, comparing with the assertion-based
approach in Smyth is further work. Another recent work, Burst, also lever-
ages the Myth benchmark, but using a ‘bottom-up’ technique [41] (in contrast
to our top-down approach, Section 4.2). The bottom-up approach synthesises a
sequence of complete programs which can be refined and tested under an ‘an-
gelic semantics’. Whether a bottom-up grade-directed approach could lead to
performance improvements is an open question.

Whilst we considered resourceful programming via graded types, other no-
tions of resourceful typing exist, including ‘ownership’ (e.g., Rust [31]) and re-
lated ‘uniqueness’ (e.g., Clean [51]). Recently, Fiala et al. synthesised Rust pro-
grams from a custom program logic Synthetic Ownership Logic that integrates a
typed approach to Rust ownership with functional specifications, allowing syn-
thesis to follow a deductive approach [16]. There is some philosophical overlap in
the resourceful ideas in their approach and ours. Drawing a closer correspondence
between Rust-style ownership and grading, to perhaps leverage our resourceful
approach to synthesis, is future work. Notably, Marshall and Orchard show that
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uniqueness types can be implemented as an extension of a linear type theory
with a non-linearity modality and uniqueness modality [38]. Further work could
adapt our approach to this setting to provide synthesis for uniqueness types as
a precursor to the full ownership and borrowing system of Rust.

The dependently-typed language Idris provides automated proof search as
part of its implementation [10]. In Idris 2, the core type theory is based on
a graded type theory [5, 39] with 0-1-ω semiring (Example 1) and with proof
synthesis extended to utilise these grades [11]. This approach has some relation
to ours, but in a limited single-semiring setting and restricted in how grades can
be leveraged. Our approach is readily applicable to Idris, which is future work.

Conclusion Our work is grounded in the philosophy of type-driven development
where the user thinks about the expected behaviour or constraints of a program
first, writing the type as a specification. Synthesis is not necessarily about having
complicated programs generated but is often about generating straightforward
programs to save effort. This is the gain provided by type-directed synthesis in
existing languages such as Agda [9] and Idris [10]. Our technique augments this,
such that boilerplate code and simple algorithms can be automatically generated,
freeing the developer to focus on other parts of a program.

A next step is to incorporate GADTs (Generalised ADTs), i.e., indexed types,
into synthesis. Granule provides support for user-defined GADTs, and the in-
teraction between grades and type indices is a key contributor to its expressive
power [45]. For example, consider a function that replicates a value a number of
times to create a list, typed rep : ∀ {t : Type} . Int → t % 0..∞ → List t.
Given a standard indexed type of natural numbers N (n : Nat) and sized-indexed
vectors Vec (n : Nat) (t : Type), a more precise specification can be given as
∀ {n : Nat, t : Type} . N n → t % n → Vec n t for which the search space
could be more effectively pruned by including type indices in synthesis.

We intend to pursue further improvements to our tool to reduce the overhead
of SMT solving, integrate examples into the search algorithm itself in the style of
Myth [47] and Leon [34], as well as considering possible semiring-dependent op-
timisations that may be applicable. Another further work is prove completeness
of our synthesis calculus which we believe this holds.

With the rise in Large Language Models showing their power at program
synthesis [6, 30] the deductive approach still has value, providing correct-by-
construction synthesis from specification rather than predicting programs which
may violate fine-grained type constraints, e.g., from grades. Future work, and a
general challenge for the deductive synthesis community, is to combine the two
approaches with the logical engine of the deductive approach guiding prediction.

Data-Availability An artefact supporting the results of this work is available at
http://zenodo.org/records/10511509.
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